This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098084 #12 Feb 04 2020 17:14:47 %S A098084 0,3,1,1,5,1,1,1,1,1,3,1,5,7,1,1,7,3,1,5,5,1,1,5,1,7,1,7,1,1,5,1,1,5, %T A098084 7,3,11,1,7,1,7,1,5,7,1,9,5,7,1,1,7,7,7,1,1,9,1,9,5,5,1,1,1,7,1,5,5,7, %U A098084 5,7,7,1,3,5,7,1,1,11,1,1,13,1,13,5,1,15,1,1,5,7,1,1,5,1,7,1,1,5,5,3,5,3,19 %N A098084 a(n) satisfies P(n) + P(n+1) + a(n) = least prime >= P(n) + P(n+1), where P(i)=i-th prime. %C A098084 a(n) = 1 iff prime(n) is in A177017. - _Robert Israel_, Feb 04 2020 %H A098084 Robert Israel, <a href="/A098084/b098084.txt">Table of n, a(n) for n = 1..10000</a> %e A098084 P(1) + P(2) = 2 + 3 = 5; least prime >= 5 = 5, so a(1)=0. %e A098084 P(2) + P(3) = 3 + 5 = 8; least prime > 8 = 11, so a(2) = 11 - 8 = 3. %e A098084 P(3) + P(4) = 5 + 7 = 12; least prime > 12 = 13, so a(3) = 13 - 12 = 1. %p A098084 P:= [seq(ithprime(i),i=1..200)]: %p A098084 map(t -> nextprime(t-1)-t,P[1..-2]+P[2..-1]); # _Robert Israel_, Feb 04 2020 %t A098084 f[n_] := Block[{k = 0, p = Prime[n] + Prime[n + 1]}, While[ !PrimeQ[p + k], k++ ]; k]; Table[ f[n], {n, 103}] (* _Robert G. Wilson v_, Sep 24 2004 *) %Y A098084 The primes are in A098085. %Y A098084 Cf. A177017. %K A098084 easy,nonn %O A098084 1,2 %A A098084 _Pierre CAMI_, Sep 13 2004 %E A098084 More terms from _Robert G. Wilson v_, Sep 25 2004