A098093 Triangle read by rows: T(n,k) is the number of peakless Motzkin paths of length n and having k ladders.
1, 1, 1, 1, 1, 1, 3, 1, 7, 1, 13, 3, 1, 22, 14, 1, 34, 46, 1, 1, 50, 118, 16, 1, 70, 264, 88, 1, 95, 530, 343, 9, 1, 125, 986, 1066, 105, 1, 161, 1722, 2857, 630, 2, 1, 203, 2863, 6841, 2751, 76, 1, 252, 4564, 15028, 9746, 781, 1, 308, 7028, 30778, 29778, 4909, 30
Offset: 0
Examples
Triangle starts: 1; 1; 1; 1,1; 1,3; 1,7; 1,13,3; 1,22,14; 1,34,46,1; Apparently, rows 5n+1 and 5n+2 have 2n+1 terms and rows 5n+3,5n+4 and 5n+5 have 2n+2 terms. T(6,2)=3 because we have (U)H(D)[U]H[D], (U)H[U]H[D](D) and (U)[U]H[D]H(D), the two ladders being shown between parentheses and square brackets, respectively.
Links
- I. L. Hofacker, P. Schuster and P. F. Stadler, Combinatorics of RNA secondary structures, Discrete Appl. Math., 88, 1998, 207-237.
- P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1979), 261-272.
- M. Vauchassade de Chaumont and G. Viennot, Polynômes orthogonaux et problèmes d'énumération en biologie moléculaire, Sem. Loth. Comb. B08l (1984) 79-86. [Formerly: Publ. I.R.M.A. Strasbourg, 1984, 229/S-08, p. 79-86.]
Formula
G.f.: G=G(t, z) satisfies G=1+zG+tz^2*G(G-1)/(1-z^2+tz^2).
Comments