This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098109 #13 Feb 03 2025 02:15:33 %S A098109 5,9,13,17,23,29,34,40,46,53,59,67,73,79,87,95,103,109,116,127,134, %T A098109 141,150,158,167,175,182,193,199,210,218,227,234,242,254,263,271,281, %U A098109 290,301,311,317,329,337,349,358,367,379,387,397,406,418,427,436,446,455 %N A098109 a(n) is the least number k such that the number of divisors of k! exceeds 10^n. %H A098109 Amiram Eldar, <a href="/A098109/b098109.txt">Table of n, a(n) for n = 1..10000</a> %p A098109 # multiply two ifactor representations [p1,e1],[p2,e2],[p3,e2] %p A098109 mulif := proc(if1, if2) %p A098109 local ifr,t,p,e,ix,ifi ; %p A098109 ifr := if1 ; %p A098109 for t in if2 do %p A098109 p := op(1,t) ; %p A098109 e := op(2,t) ; %p A098109 ix := 0 ; %p A098109 for ifi from 1 to nops(ifr) do %p A098109 if op(1,op(ifi,ifr)) = p then %p A098109 ix := ifi; %p A098109 break; %p A098109 end if; %p A098109 end do: %p A098109 if ix = 0 then %p A098109 ifr := [op(ifr),[p,e]] ; %p A098109 else %p A098109 e := e+op(2,op(ix,ifr)) ; %p A098109 ifr := subsop(ix=[p,e],ifr) ; %p A098109 end if; %p A098109 end do: %p A098109 return ifr ; %p A098109 end proc: %p A098109 # tau(iff) using multiplicative property of tau %p A098109 tauif := proc(iff) %p A098109 local r; %p A098109 r := 1 ; %p A098109 for t in iff do %p A098109 r := r*(1+op(2,t)) ; %p A098109 end do: %p A098109 return r; %p A098109 end proc: %p A098109 # ifactor representation of m! %p A098109 iffact := proc(m) %p A098109 local r,f ; %p A098109 if m <=1 then %p A098109 return [] ; %p A098109 else %p A098109 r := [[2,1]] ; %p A098109 for f from 3 to m do %p A098109 ifmf := ifactors(f)[2] ; %p A098109 r := mulif(r,ifmf) ; %p A098109 end do: %p A098109 return r; %p A098109 end if: %p A098109 end proc: %p A098109 A027423 := proc(n) %p A098109 iffact(n) ; %p A098109 tauif(%) ; %p A098109 end proc: %p A098109 A098109 := proc(n) %p A098109 local m ; %p A098109 for m from 2 do %p A098109 if A027423(m) > 10^n then %p A098109 return m; %p A098109 end if; %p A098109 end do: %p A098109 end proc: %p A098109 for n from 1 do %p A098109 print(A098109(n)) ; %p A098109 end do: # _R. J. Mathar_, Nov 19 2011 %o A098109 (PARI) A027423(n) = {my(prd = 1); forprime(p = 2, n, prd *= (1 + (n - sumdigits(n, p))/(p-1))); prd;} %o A098109 list(lim) = {my(pow = 10); for(k = 1, lim, if(A027423(k) > pow, print1(k, ", "); pow * = 10));} \\ _Amiram Eldar_, Feb 03 2025 %Y A098109 Cf. A027423. %K A098109 nonn %O A098109 1,1 %A A098109 _Jeff Burch_, Sep 23 2004