cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098112 Number of different colorings of the platonic solids allowing rotation symmetry.

This page as a plain text file.
%I A098112 #5 Sep 08 2022 08:45:14
%S A098112 5,10,23,96,17824
%N A098112 Number of different colorings of the platonic solids allowing rotation symmetry.
%C A098112 Two colorings of a platonic solid are said to be the same if one is able to pick up the solid and rotate it in such a way as to align the colors.
%o A098112 (Magma) // Tetraeder S4 := SymmetricGroup( 4 ); r := S4 ! (2,3,4); s := S4 ! (1,2)(3,4); tetraeder := sub< S4 | r, s >; // Hexaeder S6 := SymmetricGroup( 6 ); r := S6 ! (2,3,4,5); s := S6 ! (1,3,4)(2,6,5); hexaeder := sub< S6 | r, s >; // Octaeder S8 := SymmetricGroup( 8 ); r := S8 ! (1,2,3,4)(5,6,7,8); s := S8 ! (1,2,6,5)(3,7,8,4); octaeder := sub< S8 | r, s >; // Dodecaeder S12 := SymmetricGroup( 12 ); r := S12 ! (2,3,4,5,6)(7,8,9,10,11); s := S12 ! (1,3,7,11,6)(4,8,12,10,5); dodecaeder := sub< S12 | r, s >; // Icosaeder S20 := SymmetricGroup( 20 ); r := S20 ! (1,2,3,4,5)(6,8,10,12,14)(7,9,11,13,15)(16,17,18,19,20); s := S20 ! (1,2,8,7,6)(3,9,16,15,5)(10,17,20,14,4)(11,18,19,13,12); icosaeder := sub< S20 | r, s >; for G in [tetraeder, hexaeder, octaeder, dodecaeder, icosaeder] do &+[ c[2] * n^( &+[ t[2]: t in CycleStructure( c[3] ) ] ): c in C ] / #G; end for;
%K A098112 nonn,fini,full
%O A098112 1,1
%A A098112 Daan Wanrooy (wanrooy(AT)math.ru.nl), Sep 24 2004