This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098115 #13 Nov 19 2024 02:56:53 %S A098115 2,3,4,7,10,5,12,15,12,28,6,6,31,12,47,29,23,32,33,24,40,28,12,35,34, %T A098115 56,17,36,40,123,57,61,9,99,94,132,158,172,23,43,89,186,196,194,203, %U A098115 157,205,62,32,26,76,105,65,45,177,56,278 %N A098115 a(n) is the length of iteration trajectory when the cototient function (A051953) is applied to the half of the n-th primorial number (A070826(n) = A002110(n)/2). %C A098115 Initial values are here odd numbers. Comparing with the case of primorials (A098202), the lengths are here significantly smaller. The cause of this is unknown, albeit informally "understood": lack of powers of 2 in lists because parity is invariant during this iteration. See also lists for A098200 and A098201. %F A098115 a(n) = A053475(A070826(n)) = A053475(A002110(n)/2). %e A098115 For n = 7: list = {255255,163095,77815,16663,895,183,63,27,9,3,1,0}, a(7) = 12, while the comparable length for 510510 is A098202(7) = 43. %t A098115 g[x_] :=x-EulerPhi[x]; f[x_] :=Length[FixedPointList[g, x]]-1; q[x_] :=Apply[Times, Table[Prime[j], {j, 1, x}]]; t=Table[f[q[w]/2], {w, 1, 37}] %t A098115 a[n_] := Length@ NestWhileList[(# - EulerPhi[#])&, Times @@ Prime[Range[2, n]], # > 0 &]; Array[a, 30] (* _Amiram Eldar_, Nov 19 2024 *) %o A098115 (PARI) a(n) = {my(p = prod(i=2, n, prime(i)), c = 1); while(p > 0, c++; p -= eulerphi(p)); c;} \\ _Amiram Eldar_, Nov 19 2024 %Y A098115 Cf. A002110, A051953, A053475, A070826, A098200, A098201, A098202. %K A098115 nonn,more %O A098115 1,1 %A A098115 _Labos Elemer_, Sep 27 2004 %E A098115 a(38)-a(57) from _Amiram Eldar_, Nov 19 2024