This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098129 #65 Feb 23 2024 07:29:19 %S A098129 1,122,122333,1223334444,122333444455555,122333444455555666666, %T A098129 1223334444555556666667777777,122333444455555666666777777788888888, %U A098129 122333444455555666666777777788888888999999999 %N A098129 Concatenate 1 once, 2 twice, 3 three times, up to n n times. %C A098129 a(n) is composite for all 2 <= n <= 1000. - _David Cleaver_, Mar 22 2023 %H A098129 Seiichi Manyama, <a href="/A098129/b098129.txt">Table of n, a(n) for n = 1..31</a> %e A098129 a(4) = 1223334444 because 1 concatenated once then concatenated with 2 twice and 3 three times and 4 four times gives 1223334444. %p A098129 a:= n-> parse(cat(seq(i$i, i=1..n))): %p A098129 seq(a(n), n=1..12); # _Alois P. Heinz_, Mar 07 2018 %t A098129 nn = 12; a[0] = {}; Do[Set[a[n], Join[a[n - 1], Flatten@ ConstantArray[IntegerDigits[n], n]]], {n, nn}]; Array[FromDigits @* a, nn] (* _Michael De Vlieger_, Mar 29 2023 *) %o A098129 (PARI) %o A098129 a(n) = {my(a=0,i,k); %o A098129 for(i=1,n, k = logint(i,10)+1; %o A098129 a = a*10^(i*k) + i*(10^(i*k)-1)/(10^k-1); %o A098129 ); return(a); } \\ _David Cleaver_, Mar 29 2023 %o A098129 (Python) %o A098129 def A098129(n): return int(''.join(str(j)*j for j in range(1,n+1))) # _Chai Wah Wu_, Mar 29 2023 %Y A098129 Cf. A000461, A300517, A361751 (number of decimal digits). %K A098129 easy,nonn,base %O A098129 1,2 %A A098129 _Michael Joseph Halm_, Jan 04 2005 %E A098129 Offset and a(8) corrected by _Seiichi Manyama_, Mar 07 2018