This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098132 #23 May 20 2024 11:24:52 %S A098132 0,1,1,1,1,2,3,4,5,6,7,9,12,16,21,27,34,42,51,62,76,94,117,146,182, %T A098132 226,279,342,416,503,606,729,877,1056,1273,1536,1854,2237,2696,3243, %U A098132 3891,4655,5553,6607,7844,9297,11006,13019,15393,18195,21503,25407,30010 %N A098132 Number of compositions of n where the smallest part is greater than the number of parts. %H A098132 Vaclav Kotesovec, <a href="/A098132/b098132.txt">Table of n, a(n) for n = 1..10000</a> %H A098132 Hùng Việt Chu, Nurettin Irmak, Steven J. Miller, László Szalay, and Sindy Xin Zhang, <a href="https://arxiv.org/abs/2304.05409">Schreier Multisets and the s-step Fibonacci Sequences</a>, arXiv:2304.05409 [math.CO], 2023. See also <a href="https://math.colgate.edu/~integers/a7Proc23/a7Proc23.pdf">Integers</a> (2024) Vol. 24A, Art. No. A7, p. 4. %F A098132 G.f.: Sum_{n>=0} x^(n*(n+1)) / (1-x)^n. %e A098132 a(11)=7 because we have: 11, 8+3, 3+8, 7+4, 4+7, 6+5 and 5+6. %p A098132 G:=sum(x^(k^2+k)/(1-x)^k,k=0..20): Gser:=series(G,x=0,67): seq(coeff(Gser,x^n),n=1..65); # _Emeric Deutsch_, Mar 29 2005 %t A098132 nmax = 60; Rest[CoefficientList[Series[Sum[x^(k*(k+1))/(1-x)^k, {k, 1, Sqrt[nmax] + 1}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Nov 11 2018 *) %Y A098132 Cf. A003106, A003114, A077229. %K A098132 easy,nonn %O A098132 1,6 %A A098132 _Vladeta Jovovic_, Sep 27 2004 %E A098132 More terms from _Emeric Deutsch_, Mar 29 2005