A098153
Summarize the previous term in binary (in increasing order).
Original entry on oeis.org
1, 11, 101, 10101, 100111, 1001001, 1000111, 1101001, 1101001, 1101001, 1101001, 1101001, 1101001, 1101001, 1101001, 1101001, 1101001, 1101001, 1101001, 1101001, 1101001, 1101001, 1101001, 1101001, 1101001, 1101001, 1101001
Offset: 1
Summarizing a(8) = 1101001 in increasing digit order, there are "three 0's, four 1's", so concatenating 11 0 100 1 gives a(9) = 1101001 (=a(10)=a(11)=...).
A098155
Summarize the previous term in base 4 (in increasing order).
Original entry on oeis.org
1, 11, 21, 1112, 3112, 211213, 312213, 212223, 1110213, 101011213, 201111213, 101112213, 101112213, 101112213, 101112213, 101112213, 101112213, 101112213, 101112213, 101112213, 101112213, 101112213, 101112213, 101112213, 101112213
Offset: 1
Summarizing a(12) = 101112213 in increasing digit order, there are "one 0, five 1's, two 2s, one 3", so concatenating 1 0 11 1 2 2 1 3 gives a(13) = 101112213 (=a(14)=a(15)=...).
-
Nest[Append[#, FromDigits[Flatten@ Map[IntegerDigits[#, 4] & /@ Reverse@ # &, Tally@ Sort@ IntegerDigits@ #[[-1]] ] ]] &, {1}, 24] (* Michael De Vlieger, Jul 15 2020 *)
Showing 1-2 of 2 results.
Comments