This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098172 #22 Sep 08 2022 08:45:14 %S A098172 1,0,1,0,0,1,0,0,1,1,0,0,0,4,1,0,0,0,0,10,1,0,0,0,0,1,20,1,0,0,0,0,0, %T A098172 7,35,1,0,0,0,0,0,0,28,56,1,0,0,0,0,0,0,1,84,84,1,0,0,0,0,0,0,0,10, %U A098172 210,120,1,0,0,0,0,0,0,0,0,55,462,165,1,0,0,0,0,0,0,0,0,1,220,924,220,1 %N A098172 Triangle T(n,k) with diagonals T(n,n-k) = binomial(n,3k). %C A098172 Row sums are A024493. %C A098172 From _R. J. Mathar_, Mar 22 2013: (Start) %C A098172 The matrix inverse starts %C A098172 1; %C A098172 0, 1; %C A098172 0, 0, 1; %C A098172 0, 0, -1, 1; %C A098172 0, 0, 4, -4, 1; %C A098172 0, 0, -40, 40, -10, 1; %C A098172 0, 0, 796, -796, 199, -20, 1; %C A098172 0, 0, -27580, 27580, -6895, 693, -35, 1; %C A098172 ... (End) %H A098172 Seiichi Manyama, <a href="/A098172/b098172.txt">Rows n = 0..139, flattened</a> %F A098172 Triangle T(n, k) = binomial(n, 3(n-k)). %e A098172 Rows begin %e A098172 {1}, %e A098172 {0,1}, %e A098172 {0,0,1}, %e A098172 {0,0,1,1}, %e A098172 {0,0,0,4,1}, %e A098172 {0,0,0,0,10,1}, %e A098172 ... %t A098172 Table[Binomial[n, 3(n-k)], {n, 0, 12}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Mar 15 2019 *) %o A098172 (PARI) {T(n, k) = binomial(n, 3*(n-k))}; \\ _G. C. Greubel_, Mar 15 2019 %o A098172 (Magma) [[Binomial(n, 3*(n-k)): k in [0..n]]: n in [0..12]]; // _G. C. Greubel_, Mar 15 2019 %o A098172 (Sage) [[binomial(n, 3*(n-k)) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Mar 15 2019 %o A098172 (GAP) Flat(List([0..12], n-> List([0..n], k-> Binomial(n, 3*(n-k)) ))); # _G. C. Greubel_, Mar 15 2019 %Y A098172 Cf. A098158. %K A098172 easy,nonn,tabl %O A098172 0,14 %A A098172 _Paul Barry_, Aug 30 2004