cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098173 Triangle T(n,k) with diagonals T(n,n-k) = binomial(n, 4k).

This page as a plain text file.
%I A098173 #14 Sep 08 2022 08:45:14
%S A098173 1,0,1,0,0,1,0,0,0,1,0,0,0,1,1,0,0,0,0,5,1,0,0,0,0,0,15,1,0,0,0,0,0,0,
%T A098173 35,1,0,0,0,0,0,0,1,70,1,0,0,0,0,0,0,0,9,126,1,0,0,0,0,0,0,0,0,45,210,
%U A098173 1,0,0,0,0,0,0,0,0,0,165,330,1,0,0,0,0,0,0,0,0,0,1,495,495,1
%N A098173 Triangle T(n,k) with diagonals T(n,n-k) = binomial(n, 4k).
%C A098173 Row sums are A038503.
%H A098173 Seiichi Manyama, <a href="/A098173/b098173.txt">Rows n = 0..139, flattened</a>
%F A098173 Triangle T(n, k) = binomial(n, 4(n-k)).
%e A098173 Rows begin
%e A098173   {1},
%e A098173   {0,1},
%e A098173   {0,0,1},
%e A098173   {0,0,0,1},
%e A098173   {0,0,0,1,1},
%e A098173   {0,0,0,0,5,1},
%e A098173   ...
%t A098173 Table[Binomial[n, 4(n-k)], {n, 0, 12}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Mar 15 2019 *)
%o A098173 (PARI) {T(n, k) = binomial(n, 4*(n-k))}; \\ _G. C. Greubel_, Mar 15 2019
%o A098173 (Magma) [[Binomial(n, 4*(n-k)): k in [0..n]]: n in [0..12]]; // _G. C. Greubel_, Mar 15 2019
%o A098173 (Sage) [[binomial(n, 4*(n-k)) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Mar 15 2019
%o A098173 (GAP) Flat(List([0..12], n-> List([0..n], k-> Binomial(n, 4*(n-k)) ))); # _G. C. Greubel_, Mar 15 2019
%Y A098173 Cf. A098158, A098172.
%K A098173 easy,nonn,tabl
%O A098173 0,20
%A A098173 _Paul Barry_, Aug 30 2004