cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098179 Expansion of (1-3*x+3*x^2)/(1-5*x+10*x^2-10*x^3+4*x^4).

This page as a plain text file.
%I A098179 #11 Jun 13 2015 00:51:31
%S A098179 1,2,3,5,11,27,63,135,271,527,1023,2015,4031,8127,16383,32895,65791,
%T A098179 131327,262143,523775,1047551,2096127,4194303,8390655,16781311,
%U A098179 33558527,67108863,134209535,268419071,536854527,1073741823,2147516415
%N A098179 Expansion of (1-3*x+3*x^2)/(1-5*x+10*x^2-10*x^3+4*x^4).
%C A098179 Partial sums of A038503. Binomial transform of A098178.
%H A098179 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-4).
%F A098179 a(n) = 2^n+2^(n/2)cos(pi*n/4)-1; a(n) = 5a(n-1)-10a(n-2)+10a(n-3)-4a(n-4).
%t A098179 LinearRecurrence[{5,-10,10,-4},{1,2,3,5},40] (* or *) CoefficientList[ Series[(1-3 x+3 x^2)/(1-5 x+10 x^2-10 x^3+4 x^4),{x,0,40}],x] (* _Harvey P. Dale_, Oct 06 2011 *)
%K A098179 easy,nonn
%O A098179 0,2
%A A098179 _Paul Barry_, Aug 30 2004