cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098180 Odd numbers with twice the odd numbers repeated in order between them.

This page as a plain text file.
%I A098180 #24 Sep 08 2022 08:45:14
%S A098180 1,2,2,3,5,6,6,7,9,10,10,11,13,14,14,15,17,18,18,19,21,22,22,23,25,26,
%T A098180 26,27,29,30,30,31,33,34,34,35,37,38,38,39,41,42,42,43,45,46,46,47,49,
%U A098180 50,50,51,53,54,54,55,57,58,58,59,61,62,62,63,65,66,66,67,69,70,70,71
%N A098180 Odd numbers with twice the odd numbers repeated in order between them.
%C A098180 Partial sums of A098178.
%C A098180 Also A042968 with the even terms repeated. - _Michel Marcus_, Apr 14 2015
%C A098180 Fixed points are [2,3,6,7,10,11,..] = A042964. - _Wesley Ivan Hurt_, Oct 13 2015
%H A098180 Iain Fox, <a href="/A098180/b098180.txt">Table of n, a(n) for n = 0..10000</a>
%H A098180 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,-2,2,-1).
%F A098180 G.f.: (1+x)(1-x+x^2)/((1-x)^2(1+x^2)).
%F A098180 a(n) = sqrt(2)*sin(Pi*n/2+Pi/4)/2+n+1/2.
%F A098180 a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-a(n-4), n>3.
%F A098180 From _Wesley Ivan Hurt_, Apr 12 2015, Oct 13 2015: (Start)
%F A098180 a(n) = (2n+1-(-1)^((n+1)*(n+2)/2))/2.
%F A098180 a(n) = n + A002265(n) - A002265(n-2). (End)
%F A098180 E.g.f: (exp(-i*x)*((1+i) + (1-i)*exp(2*i*x) + exp((1+i)*x)*(2+4*x)))/4, where i = sqrt(-1). - _Iain Fox_, Oct 17 2018
%p A098180 A098180:=n->(2*n+1-(-1)^((n+1)*(n+2)/2))/2: seq(A098180(n), n=0..100); # _Wesley Ivan Hurt_, Apr 12 2015
%t A098180 Table[(2 n + 1 - (-1)^((n + 1) (n + 2)/2))/2, {n, 0, 40}] (* _Wesley Ivan Hurt_, Apr 12 2015 *)
%o A098180 (Magma) [Floor((2*n+1-(-1)^((n+1)*(n+2)/2))/2): n in [0..80]]; // _Vincenzo Librandi_, Apr 13 2015
%o A098180 (PARI) first(n) = Vec((1+x)*(1-x+x^2)/((1-x)^2*(1+x^2)) + O(x^n)) \\ _Iain Fox_, Oct 17 2018
%o A098180 (PARI) a(n) = (2*n+1-(-1)^((n+1)*(n+2)/2))/2 \\ _Iain Fox_, Oct 17 2018
%Y A098180 Cf. A002265, A042964, A042968, A098178.
%K A098180 easy,nonn
%O A098180 0,2
%A A098180 _Paul Barry_, Aug 30 2004