This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098198 #35 Aug 08 2025 09:10:42 %S A098198 2,7,0,5,8,0,8,0,8,4,2,7,7,8,4,5,4,7,8,7,9,0,0,0,9,2,4,1,3,5,2,9,1,9, %T A098198 7,5,6,9,3,6,8,7,7,3,7,9,7,9,6,8,1,7,2,6,9,2,0,7,4,4,0,5,3,8,6,1,0,3, %U A098198 0,1,5,4,0,4,6,7,4,2,2,1,1,6,3,9,2,2,7,4,0,8,9,8,5,4,2,4,9,7,9,3,0,8,2,4,7 %N A098198 Decimal expansion of Pi^4/36 = zeta(2)^2. %H A098198 Ce Xu and Jianqiang Zhao, <a href="https://arxiv.org/abs/2203.04184">Sun's Three Conjectures on Apéry-like Sums Involving Harmonic Numbers</a>, arXiv:2203.04184 [math.NT], 2022. %H A098198 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A098198 Decimal expansion of limit of q(n)= A024916(n)/A002088(n) = SummatorySigma / SummatoryTotient. %F A098198 Equals Sum_{n>=1} A000005(n)/n^2. - _R. J. Mathar_, Dec 18 2010 %F A098198 Equals 10*Sum_{n>=2} (psi(n)+gamma)/n^3. - _Jean-François Alcover_, Feb 25 2013 %F A098198 Equals Zeta(4)*10/4 = A013662/0.4 = 1/A227929. - _R. J. Mathar_, Jul 20 2025 %F A098198 Equals 10 * zeta(3,1) = 10 * Sum_{n >= 1} 1/n Sum_{k >= n+1} 1/k^3 = 10 * Sum_{n >= 1} 1/n^3 * Sum_{k = 1..n-1} 1/k. - _Peter Bala_, Aug 07 2025 %e A098198 2.70580808427784547879000924135291975693687737979... = 2*A152649 = A013661^2. %t A098198 RealDigits[N[Pi^4/36, 256]] %o A098198 (PARI) zeta(2)^2 \\ _Charles R Greathouse IV_, Aug 08 2013 %Y A098198 Cf. A002088, A024916. %K A098198 cons,nonn %O A098198 1,1 %A A098198 _Labos Elemer_, Sep 21 2004