cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098202 a(n) is the length of the iteration trajectory when the cototient function (A051953) is applied to the n-th primorial number (A002110(n)).

This page as a plain text file.
%I A098202 #15 Nov 19 2024 03:00:50
%S A098202 3,5,8,12,18,20,31,32,41,43,61,65,80,77,95,125,131,125,157,173,140,
%T A098202 192,195,221,213,212,261,269,277,300,296,321,336,329,358,367,379,405,
%U A098202 428,439,438,464,477,493,506,454,491,542,564,588,543,600,639,660
%N A098202 a(n) is the length of the iteration trajectory when the cototient function (A051953) is applied to the n-th primorial number (A002110(n)).
%F A098202 a(n) = A053475(A002110(n)). - _Robert G. Wilson v_, Sep 22 2004
%e A098202 For n = 3: list = {30,22,12,8,4,2,1,0}, a(4) = 8.
%t A098202 g[x_] := x - EulerPhi[x]; f[x_] := Length[ FixedPointList[g, x]] - 1; q[x_] := Product[ Prime[j], {j, x}]; Table[ f[ q[n]], {n, 33}]
%t A098202 a[n_] := Length@ NestWhileList[(# - EulerPhi[#])&, Times @@ Prime[Range[n]], # > 0 &]; Array[a, 30] (* _Amiram Eldar_, Nov 19 2024 *)
%o A098202 (PARI) a(n) = {my(p = prod(i=1, n, prime(i)), c = 1); while(p > 0, c++; p -= eulerphi(p)); c;} \\ _Amiram Eldar_, Nov 19 2024
%Y A098202 Cf. A002110, A051953, A053475, A098115.
%K A098202 nonn,more
%O A098202 1,1
%A A098202 _Labos Elemer_, Sep 22 2004
%E A098202 More terms from _Robert G. Wilson v_, Sep 22 2004
%E A098202 a(37)-a(54) from _Amiram Eldar_, Nov 19 2024