cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098216 Nonprime numbers m for which cototient(m) is a decimal repdigit.

Original entry on oeis.org

1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 21, 25, 27, 30, 35, 49, 60, 86, 90, 93, 120, 121, 145, 159, 172, 175, 195, 231, 245, 253, 279, 291, 327, 365, 497, 535, 559, 693, 703, 737, 886, 979, 981, 993, 1037, 1111, 1121, 1411, 1457, 1517, 1617, 1772, 1774, 2047, 2059
Offset: 1

Views

Author

Labos Elemer, Oct 22 2004

Keywords

Comments

For any odd repdigit k, Goldbach's conjecture implies there are primes p, q with p + q = k + 1, and then (if p <> q) p*q is a term. - Robert Israel, Jul 26 2025

Examples

			For m=97002, m-totient(m)=66666.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local t,x;
      t:= n - numtheory:-phi(n);
      if t = 1 then return false fi;
      x:= t mod 10;
      t = x * (10^(ilog10(t)+1)-1)/9
    end proc:
    select(filter, [$1..3000]); # Robert Israel, Jul 25 2025
  • Mathematica
    ta={{0}};Do[s=Length[Union[IntegerDigits[n-EulerPhi[n]]]]; If[Equal[s, 1]&&!PrimeQ[n], Print[{n, n-EulerPhi[n]}];ta=Append[ta, n]], {n, 1, 100000}];ta=Delete[ta, 1];ta-EulerPhi[ta]