A098221 a(n) is the smallest number x such that floor(sigma(sigma(x))/x) = n or the A098219(x) quotient equals n.
1, 2, 8, 6, 40, 30, 24, 60, 120, 480, 540, 1560, 2520, 10920, 27720, 30240, 191520, 524160, 360360, 3243240, 5765760, 28828800, 109549440, 438197760, 766846080, 3834230400, 9081072000, 32974381440, 147516969600, 880887047040, 2802822422400
Offset: 1
Examples
n = 10: a(10) = 480 because floor(sigma(sigma(480))/480) = floor(sigma(1512)/480) = floor(4800/480) = 4800/480 = n = 10.
Programs
-
Mathematica
t=Table[0, {100}];Do[s=g[n];If[s<101&&t[[s]]==0, t[[s]]=n], {n, 1, 1000000}];t
Formula
a(n) = Min{x;floor(A051027(x)/x)=n}.
Extensions
a(20)-a(26) from Donovan Johnson, Dec 29 2008
a(27)-a(29) from Donovan Johnson, Feb 16 2013
a(30)-a(31) from Giovanni Resta, Feb 27 2020
Comments