cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098233 Consider the family of ordinary multigraphs. Sequence gives the triangle read by rows giving coefficients of polynomials arising from enumeration of those multigraphs on n edges.

This page as a plain text file.
%I A098233 #33 Apr 18 2025 05:49:48
%S A098233 1,1,1,1,1,1,4,7,3,1,1,13,46,47,25,6,1,1,40,295,587,516,235,65,10,1,1,
%T A098233 121,1846,6715,9690,7053,3006,800,140,15,1,1,364,11347,73003,170051,
%U A098233 189458,119211,46795,12201,2170,266,21,1,1,1093,68986,768747
%N A098233 Consider the family of ordinary multigraphs. Sequence gives the triangle read by rows giving coefficients of polynomials arising from enumeration of those multigraphs on n edges.
%C A098233 Also gives number T(n, k) of partitions of the multiset {1, 1, 2, 2, ..., n, n} into k nonempty subsets, for 2 <= k <= 2n. - _Marko Riedel_, Jan 22 2023
%D A098233 G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004.
%H A098233 Steve Butler, Fan Chung, Jay Cummings, and R. L. Graham, <a href="http://arxiv.org/abs/1504.01426">Juggling card sequences</a>, arXiv:1504.01426 [math.CO], 2015.
%H A098233 L. Comtet, <a href="/A002718/a002718.pdf">Birecouvrements et birevêtements d'un ensemble fini</a>, Studia Sci. Math. Hungar 3 (1968): 137-152. [Annotated scanned copy. Warning: the table of v(n,k) has errors.]
%H A098233 G. Paquin, <a href="/A038205/a038205.pdf">Dénombrement de multigraphes enrichis</a>, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission]
%e A098233 The first few polynomials are:
%e A098233   1,
%e A098233   x^2,
%e A098233   x^2+x^3+x^4,
%e A098233   x^2+4x^3+7x^4+3x^5+x^6,
%e A098233   x^2+13x^3+46x^4+47x^5+25x^6+6x^7+x^8,
%e A098233   x^2+40x^3+295x^4+587x^5+516x^6+235x^7+65x^8+10x^9+x^10,
%e A098233   ...
%e A098233 Triangle starts:
%e A098233   1;
%e A098233   1;
%e A098233   1,  1,   1;
%e A098233   1,  4,   7,   3,   1;
%e A098233   1, 13,  46,  47,  25,   6,  1;
%e A098233   1, 40, 295, 587, 516, 235, 65, 10, 1;
%e A098233   ...
%Y A098233 Cf. A360037, A360038, A360039, A020554 (row sums).
%K A098233 nonn,tabf
%O A098233 0,7
%A A098233 _N. J. A. Sloane_, Oct 26 2004