cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098241 Numbers k such that 216*k+108 is a term of A097703 and A007494 and A098240.

Original entry on oeis.org

302, 2117, 2909, 3327, 3932, 5142, 5747, 6957, 8772, 9377, 11192, 12402, 13007, 14217, 14547, 16032, 17847, 18452, 20267, 20366, 21477, 22082, 23292, 23897, 25107, 25403, 26922, 27527, 29342, 30552, 31157, 32367, 32972, 34182, 35997, 36602, 37823, 38417, 39627
Offset: 1

Views

Author

Ralf Stephan and Robert G. Wilson v, Sep 15 2004

Keywords

Comments

Numbers k such that m = 216*k+108 satisfies sigma(m) <> 2*usigma(m) (A097703), m is not of the form 3x+1 (A007494) and GCD(2*m+1, numerator(Bernoulli(4*m+2))) is squarefree (A098240).
Also, terms m of A097704 such that GCD(2*m+1, Bernoulli(4*m+2)) is squarefree. Most terms of A097704 are in A098240. These are the exceptions.

Crossrefs

Programs

  • Mathematica
    usigma[n_] := Block[{d = Divisors[n]}, Plus @@ Select[d, GCD[ #, n/# ] == 1 &]]; lmt = 1296000; t = (Select[ Range[ lmt], DivisorSigma[1, # ] == 2usigma[ # ] &] - 108)/216; u = (Select[ Range[ Floor[(lmt - 108)/432]], !SquareFreeQ[ GCD[ #, Numerator[ BernoulliB[ 2# ]] ]] &] -1)/2; v = Table[ 3k - 2, {k, Floor[(lmt - 108)/216]}]; Complement[ Range[ Floor[ (lmt - 108)/216]], t, u, v]
    q[n_] := Mod[n, 3] != 1 && (Divisible[2*n + 1, 3] || (! Divisible[2*n + 1, 3] && ! SquareFreeQ[2*n + 1])) && SquareFreeQ[GCD[2*n + 1, BernoulliB[4*n + 2]]]; Select[Range[10^4], q] (* Amiram Eldar, Aug 31 2024 *)

Extensions

More terms from Amiram Eldar, Aug 31 2024