cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098251 Chebyshev polynomials S(n,363).

Original entry on oeis.org

1, 363, 131768, 47831421, 17362674055, 6302602850544, 2287827472073417, 830475069759799827, 301460162495335263784, 109429208510736940953765, 39722501229235014230952911, 14419158517003799428894952928
Offset: 0

Views

Author

Wolfdieter Lang, Sep 10 2004

Keywords

Comments

Used for all positive integer solutions of Pell equation x^2 - 365*y^2 = -4. See A098252 with A098253.

Formula

a(n)= S(n, 363)=U(n, 363/2)= S(2*n+1, sqrt(365))/sqrt(365) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n)=363*a(n-1)-a(n-2), n >= 1; a(0)=1, a(1)=363; a(-1):=0.
a(n)=(ap^(n+1) - am^(n+1))/(ap-am) with ap := (363+19*sqrt(365))/2 and am := (363-19*sqrt(365))/2 = 1/ap.
G.f.: 1/(1-363*x+x^2).