A098251 Chebyshev polynomials S(n,363).
1, 363, 131768, 47831421, 17362674055, 6302602850544, 2287827472073417, 830475069759799827, 301460162495335263784, 109429208510736940953765, 39722501229235014230952911, 14419158517003799428894952928
Offset: 0
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..389
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (363,-1).
- Index entries for sequences related to Chebyshev polynomials.
Formula
a(n)= S(n, 363)=U(n, 363/2)= S(2*n+1, sqrt(365))/sqrt(365) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n)=363*a(n-1)-a(n-2), n >= 1; a(0)=1, a(1)=363; a(-1):=0.
a(n)=(ap^(n+1) - am^(n+1))/(ap-am) with ap := (363+19*sqrt(365))/2 and am := (363-19*sqrt(365))/2 = 1/ap.
G.f.: 1/(1-363*x+x^2).
Comments