cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098254 Chebyshev polynomials S(n,443).

This page as a plain text file.
%I A098254 #13 Mar 16 2017 14:10:20
%S A098254 1,443,196248,86937421,38513081255,17061208058544,7558076656853737,
%T A098254 3348210897778146947,1483249869639062243784,657076344039206795849365,
%U A098254 291083337159498971499024911,128949261285314005167272186208
%N A098254 Chebyshev polynomials S(n,443).
%C A098254 Used for all positive integer solutions of Pell equation x^2 - 445*y^2 = -4. See A098255 with A098256.
%H A098254 Indranil Ghosh, <a href="/A098254/b098254.txt">Table of n, a(n) for n = 0..377</a>
%H A098254 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H A098254 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (443, -1).
%H A098254 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%F A098254 G.f.: 1/(1 - 443*x + x^2).
%F A098254 a(n) = S(n, 443)=U(n, 443/2)= S(2*n+1, sqrt(445))/sqrt(445) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x).
%F A098254 a(n) = 443*a(n-1)-a(n-2) for n >= 1, a(0)=1, a(1)=443, and a(-1):=0.
%F A098254 a(n) = (ap^(n+1) - am^(n+1))/(ap - am) with ap:=(443 + 21*sqrt(445))/2 and am:=(443 - 21*sqrt(445))/2 = 1/ap.
%K A098254 nonn,easy
%O A098254 0,2
%A A098254 _Wolfdieter Lang_, Sep 10 2004