This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098254 #13 Mar 16 2017 14:10:20 %S A098254 1,443,196248,86937421,38513081255,17061208058544,7558076656853737, %T A098254 3348210897778146947,1483249869639062243784,657076344039206795849365, %U A098254 291083337159498971499024911,128949261285314005167272186208 %N A098254 Chebyshev polynomials S(n,443). %C A098254 Used for all positive integer solutions of Pell equation x^2 - 445*y^2 = -4. See A098255 with A098256. %H A098254 Indranil Ghosh, <a href="/A098254/b098254.txt">Table of n, a(n) for n = 0..377</a> %H A098254 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A098254 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (443, -1). %H A098254 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a> %F A098254 G.f.: 1/(1 - 443*x + x^2). %F A098254 a(n) = S(n, 443)=U(n, 443/2)= S(2*n+1, sqrt(445))/sqrt(445) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x). %F A098254 a(n) = 443*a(n-1)-a(n-2) for n >= 1, a(0)=1, a(1)=443, and a(-1):=0. %F A098254 a(n) = (ap^(n+1) - am^(n+1))/(ap - am) with ap:=(443 + 21*sqrt(445))/2 and am:=(443 - 21*sqrt(445))/2 = 1/ap. %K A098254 nonn,easy %O A098254 0,2 %A A098254 _Wolfdieter Lang_, Sep 10 2004