This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098260 #11 Jul 31 2015 13:11:52 %S A098260 1,627,393128,246490629,154549231255,96902121506256,60757475635191257, %T A098260 38094840321143411883,23885404123881284059384, %U A098260 14976110290833243961821885,9389997266948320082778262511 %N A098260 Chebyshev polynomials S(n,627). %C A098260 Used for all positive integer solutions of Pell equation x^2 - 629*y^2 = -4. See A098261 with A098262. %H A098260 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A098260 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a> %H A098260 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (627, -1). %F A098260 a(n)= S(n, 627)=U(n, 627/2)= S(2*n+1, sqrt(629))/sqrt(629) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x). %F A098260 a(n)=627*a(n-1)-a(n-2), n >= 1; a(0)=1, a(1)=627; a(-1):=0. %F A098260 a(n)=(ap^(n+1) - am^(n+1))/(ap-am) with ap := (627+25*sqrt(629))/2 and am := (627-25*sqrt(629))/2 = 1/ap. %F A098260 G.f.: 1/(1-627*x+x^2). %t A098260 LinearRecurrence[{627,-1},{1,627},20] (* _Harvey P. Dale_, Aug 28 2012 *) %K A098260 nonn,easy %O A098260 0,2 %A A098260 _Wolfdieter Lang_, Sep 10 2004