cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098299 Member r=14 of the family of Chebyshev sequences S_r(n) defined in A092184.

This page as a plain text file.
%I A098299 #15 Feb 24 2021 04:15:54
%S A098299 0,1,14,169,2016,24025,286286,3411409,40650624,484396081,5772102350,
%T A098299 68780832121,819597883104,9766393765129,116377127298446,
%U A098299 1386759133816225,16524732478496256,196910030608138849
%N A098299 Member r=14 of the family of Chebyshev sequences S_r(n) defined in A092184.
%H A098299 Michael De Vlieger, <a href="/A098299/b098299.txt">Table of n, a(n) for n = 0..930</a>
%H A098299 S. Barbero, U. Cerruti, and N. Murru, <a href="http://www.seminariomatematico.polito.it/rendiconti/78-1/BarberoCerrutiMurru.pdf">On polynomial solutions of the Diophantine equation (x + y - 1)^2 = wxy</a>, Rendiconti Sem. Mat. Univ. Pol. Torino (2020) Vol. 78, No. 1, 5-12.
%H A098299 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%H A098299 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (13,-13,1).
%F A098299 a(n) = (T(n, 6)-1)/5 with Chebyshev's polynomials of the first kind evaluated at x=6: T(n, 6)=A023038(n)= ((6+sqrt(35))^n + (6-sqrt(35))^n)/2.
%F A098299 a(n) = 12*a(n-1) - a(n-2) + 2, n>=2, a(0)=0, a(1)=1.
%F A098299 a(n) = 13*a(n-1) - 13*a(n-2) + a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=14.
%F A098299 G.f.: x*(1+x)/((1-x)*(1-12*x+x^2)) = x*(1+x)/(1-13*x+13*x^2-x^3) (from the Stephan link, see A092184).
%t A098299 LinearRecurrence[{13, -13, 1}, {0, 1, 14}, 18] (* _Michael De Vlieger_, Feb 23 2021 *)
%K A098299 nonn,easy
%O A098299 0,3
%A A098299 _Wolfdieter Lang_, Oct 18 2004