cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098302 Member r=17 of the family of Chebyshev sequences S_r(n) defined in A092184.

Original entry on oeis.org

0, 1, 17, 256, 3825, 57121, 852992, 12737761, 190213425, 2840463616, 42416740817, 633410648641, 9458742988800, 141247734183361, 2109257269761617, 31497611312240896, 470354912413851825, 7023826074895536481
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Programs

  • Mathematica
    LinearRecurrence[{# - 1, -# + 1, 1}, {0, 1, #}, 18] &[17] (* Michael De Vlieger, Feb 23 2021 *)

Formula

a(n) = 2*(T(n, 15/2)-1)/13 with twice the Chebyshev polynomials of the first kind evaluated at x=15/2: 2*T(n, 15/2)=A078365(n)= ((15+sqrt(221))^n +(15-sqrt(221))^n)/2^n.
a(n) = 15*a(n-1) - a(n-2) + 2, n>=2, a(0)=0, a(1)=1.
a(n) = 16*a(n-1) - 16*a(n-2) + a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=17.
G.f.: x*(1+x)/((1-x)*(1-15*x+x^2)) = x*(1+x)/(1-16*x+16*x^2-x^3) (from the Stephan link, see A092184).
a(2*n+2) = 17*A078364(n)^2; a(2*n+1) = A161591(n+1)^2. - Klaus Purath, Aug 13 2025