cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098303 Member r=18 of the family of Chebyshev sequences S_r(n) defined in A092184.

Original entry on oeis.org

0, 1, 18, 289, 4608, 73441, 1170450, 18653761, 297289728, 4737981889, 75510420498, 1203428746081, 19179349516800, 305666163522721, 4871479266846738, 77638002106025089, 1237336554429554688
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Programs

  • Mathematica
    LinearRecurrence[{# - 1, -# + 1, 1}, {0, 1, #}, 17] &[18] (* Michael De Vlieger, Feb 23 2021 *)

Formula

a(n) = (T(n, 8)-1)/7 with Chebyshev's polynomials of the first kind evaluated at x=8: T(n, 8)=A001081(n)= ((8+3*sqrt(7))^n + (8-3*sqrt(7))^n)/2.
a(n) = 16*a(n-1) - a(n-2) + 2, n>=2, a(0)=0, a(1)=1.
a(n) = 17*a(n-1) - 17*a(n-2) + a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=18.
G.f.: x*(1+x)/((1-x)*(1-16*x+x^2)) = x*(1+x)/(1-17*x+17*x^2-x^3) (from the Stephan link, see A092184).