cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098304 Member r=19 of the family of Chebyshev sequences S_r(n) defined in A092184.

Original entry on oeis.org

0, 1, 19, 324, 5491, 93025, 1575936, 26697889, 452288179, 7662201156, 129805131475, 2199025033921, 37253620445184, 631112522534209, 10691659262636371, 181127094942284100, 3068468954756193331
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2004

Keywords

Programs

  • Mathematica
    LinearRecurrence[{# - 1, -# + 1, 1}, {0, 1, #}, 17] &[19] (* Michael De Vlieger, Feb 23 2021 *)

Formula

a(n) = 2*(T(n, 17/2)-1)/15 with twice the Chebyshev polynomials of the first kind evaluated at x=17/2: 2*T(n, 17/2) = A078367(n) = ((17+sqrt(285))^n + (17-sqrt(285))^n)/2^n.
a(n) = 17*a(n-1) - a(n-2) + 2, n>=2, a(0)=0, a(1)=1.
a(n) = 18*a(n-1) - 18*a(n-2) + a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=19.
G.f.: x*(1+x)/((1-x)*(1-17*x+x^2)) = x*(1+x)/(1-18*x+18*x^2-x^3) (from the Stephan link, see A092184).