cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098325 Recurrence sequence based on positions of digits in decimal places of sqrt(Pi).

This page as a plain text file.
%I A098325 #12 Feb 20 2022 05:49:54
%S A098325 0,9,10,75,39,218,78,61,45,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
%T A098325 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
%U A098325 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4
%N A098325 Recurrence sequence based on positions of digits in decimal places of sqrt(Pi).
%F A098325 a(1)=0, p(i)=position of first occurrence of a(i) in decimal places of sqrt(Pi), a(i+1)=p(i).
%e A098325 sqrt(Pi)=1.7724538509055...
%e A098325 So for example, a(2)=9 because 9th decimal place of sqrt(Pi) is 0.
%e A098325 a(3)=10 because 10th decimal place of sqrt(Pi) is 9, a(4)=75 because 10 appears at the 75th to 76th decimal places and so on.
%e A098325 This sequence, like the one for Zeta(3) (A098290), repeats after just a few terms once the sequence hits 4 at position 4.
%p A098325 with(StringTools): Digits:=1000: G:=convert(evalf(sqrt(Pi)),string): a[0]:=0: for n from 1 to 15 do a[n]:=Search(convert(a[n-1],string), G)-2:printf("%d, ",a[n-1]):od: # _Nathaniel Johnston_, Apr 30 2011
%Y A098325 Other recurrence sequences: A097614 for Pi, A098266 for e, A098289 for log(2), A098290 for Zeta(3), A098319 for 1/Pi, A098320 for 1/e, A098321 for gamma, A098322 for G, A098323 for 1/G, A098324 for Golden Ratio, phi. A002161 for digits of sqrt(Pi).
%K A098325 easy,nonn,base
%O A098325 0,2
%A A098325 Mark Hudson (mrmarkhudson(AT)hotmail.com), Sep 03 2004