cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098326 Recurrence derived from the decimal places of sqrt(2). a(0)=0, a(i+1)=position of first occurrence of a(i) in decimal places of sqrt(2).

Original entry on oeis.org

0, 13, 5, 7, 11, 186, 239, 336, 1284, 5889, 11708, 70286, 19276, 35435, 22479, 42202, 28785, 107081, 973876, 1187108
Offset: 0

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Sep 13 2004

Keywords

Examples

			sqrt(2)=1.4142135623730950488...
So for example a(2)=13 because 13th decimal place of sqrt(2) is 0; then a(3)=5 because 13 is found starting at the 5th decimal place; a(4)=7 because 5 is at the 7th decimal place and so on.
		

Crossrefs

Other recurrence sequences: A097614 for Pi, A098266 for e, A098289 for log(2), A098290 for Zeta(3), A098319 for 1/Pi, A098320 for 1/e, A098321 for gamma, A098322 for G, A098323 for 1/G, A098324 for Golden Ratio (phi), A098325 for sqrt(Pi), A120482 for sqrt(3), A189893 for sqrt(5). A002193 for digits of sqrt(2).

Programs

  • Maple
    with(StringTools): Digits:=10000: G:=convert(evalf(sqrt(2)),string): a[0]:=0: for n from 1 to 10 do a[n]:=Search(convert(a[n-1],string), G)-2:printf("%d, ",a[n-1]):od: # Nathaniel Johnston, Apr 30 2011

Extensions

a(18)-a(19) from Nathaniel Johnston, Apr 30 2011