cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098335 Expansion of 1/sqrt(1-4x+8x^2).

This page as a plain text file.
%I A098335 #40 Jan 30 2020 21:29:15
%S A098335 1,2,2,-4,-26,-68,-76,184,1222,3308,3772,-9656,-64676,-177448,-203992,
%T A098335 536176,3607622,9968972,11510636,-30723416,-207302156,-575382392,
%U A098335 -666187432,1796105744,12142184476,33803271032
%N A098335 Expansion of 1/sqrt(1-4x+8x^2).
%C A098335 Central coefficients of (1+2x-x^2)^n. Binomial transform of A098331.
%C A098335 Diagonal of rational function 1/(1 - (x^2 + 2*x*y - y^2)). - _Gheorghe Coserea_, Aug 04 2018
%H A098335 G. C. Greubel, <a href="/A098335/b098335.txt">Table of n, a(n) for n = 0..1000</a>
%H A098335 Tony D. Noe, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Noe/noe35.html">On the Divisibility of Generalized Central Trinomial Coefficients</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
%F A098335 From _Paul Barry_, Sep 08 2004: (Start)
%F A098335 E.g.f. : exp(2*x)*BesselI(0, 2*I*x), I=sqrt(-1);
%F A098335 a(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*binomial(n-k,k)*2^n*(-4)^(-k).
%F A098335 a(n) = Sum_{k=0..floor(n/2)} binomial(n,k)*binomial(2(n-k),k)*(-2)^k. (End)
%F A098335 E.g.f. : exp(2*x)*BesselJ(0, 2*x). - _Sergei N. Gladkovskii_, Aug 22 2012
%F A098335 It appears that a(j+2) = (2*(2*j+1)*a(j+1))/(j+1)-(8*j*a(j))/(j+1), in case of re-indexing from 0 to 1. - _Alexander R. Povolotsky_, Aug 22 2012
%F A098335 D-finite with recurrence: a(n+2) = ((4*n+6)*a(n+1) - 8*(n+1)*a(n))/(n+2); a(0)=1,a(1)=2. - _Sergei N. Gladkovskii_, Aug 22 2012
%F A098335 a(n) = 2^n*_2F_1(1/2-n/2, -n/2, 1, -1), where _2F_1(a,b;c;x) is the hypergeometric function. - _Alexander R. Povolotsky_, Aug 22 2012
%t A098335 a[n_] := 2^n*Hypergeometric2F1[1/2 - n/2, -n/2, 1, -1]; Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Sep 05 2012, after _Alexander R. Povolotsky_ *)
%t A098335 CoefficientList[Series[1/Sqrt[1 - 4*x + 8*x^2], {x,0,50}], x] (* _G. C. Greubel_, Feb 19 2017 *)
%o A098335 (PARI) x='x+O('x^25); Vec(1/sqrt(1 - 4*x + 8*x^2)) \\ _G. C. Greubel_, Feb 19 2017
%K A098335 easy,sign
%O A098335 0,2
%A A098335 _Paul Barry_, Sep 03 2004