This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098352 #13 Sep 08 2022 08:45:15 %S A098352 4,8,8,12,16,12,16,24,24,16,20,32,36,32,20,24,40,48,48,40,24,28,48,60, %T A098352 64,60,48,28,32,56,72,80,80,72,56,32,36,64,84,96,100,96,84,64,36,40, %U A098352 72,96,112,120,120,112,96,72,40,44,80,108,128,140,144,140,128,108,80,44 %N A098352 Multiplication table of the even numbers read by antidiagonals. %H A098352 G. C. Greubel, <a href="/A098352/b098352.txt">Antidiagonals n = 1..100, flattened</a> %F A098352 T(n,k) = 4*A003991(n,k). - _R. J. Mathar_, Dec 08 2015 %e A098352 4 8 12 16 20 24 28 32 %e A098352 8 16 24 32 40 48 56 64 %e A098352 12 24 36 48 60 72 84 96 %e A098352 16 32 48 64 80 96 112 128 %e A098352 20 40 60 80 100 120 140 160 %e A098352 24 48 72 96 120 144 168 192 %e A098352 28 56 84 112 140 168 196 224 %e A098352 32 64 96 128 160 192 224 256 %p A098352 seq(seq(4*k*(n-k+1), k = 1..n), n = 1..12); # _G. C. Greubel_, Aug 16 2019 %t A098352 Table[4*k*(n-k+1), {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, Aug 16 2019 *) %o A098352 (PARI) T(n,k) = 4*k*(n-k+1); \\ _G. C. Greubel_, Aug 16 2019 %o A098352 (Magma) [4*k*(n-k+1): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Aug 16 2019 %o A098352 (Sage) [[4*k*(n-k+1) for k in (1..n)] for n in (1..12)] # _G. C. Greubel_, Aug 16 2019 %o A098352 (GAP) Flat(List([1..12], n-> List([1..n], k-> 4*k*(n-k+1) ))); # _G. C. Greubel_, Aug 16 2019 %Y A098352 Cf. A003991, A098353. %K A098352 nonn,tabl,easy %O A098352 1,1 %A A098352 Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004