cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098361 Multiplication table of the factorial numbers read by antidiagonals.

This page as a plain text file.
%I A098361 #76 Dec 20 2024 23:53:22
%S A098361 1,1,1,2,1,2,6,2,2,6,24,6,4,6,24,120,24,12,12,24,120,720,120,48,36,48,
%T A098361 120,720,5040,720,240,144,144,240,720,5040,40320,5040,1440,720,576,
%U A098361 720,1440,5040,40320,362880,40320,10080,4320,2880,2880,4320,10080,40320,362880
%N A098361 Multiplication table of the factorial numbers read by antidiagonals.
%C A098361 This sequence gives the variance of the 2-dimensional Polynomial Chaoses (see the Stochastic Finite Elements reference). - _Stephen Crowley_, Mar 28 2007
%C A098361 Antidiagonal sums of the array A are A003149 (row sums of the triangle T). - _Roger L. Bagula_, Oct 29 2008
%C A098361 The triangle T(n, k) = k!*(n-k)! appears as denominators in the coefficients of the Niven polynomials x^n*(1 - x)^n/n! = Sum_{k=0..n} (-1)^k * x^(n+k)/((n-k)!*k!). These polynomials are used in a proof that Pi^2 (hence Pi) is irrational. See the Niven and Havil references. - _Wolfdieter Lang_, May 07 2018; corrected by _Dimitri Papadopoulos_, Nov 30 2023
%C A098361 The case T(n+1,k) = k!*(n-k+1)!, 1 <= k <= n+1, n >= 0 is the number of choices for forming a cluster (compact group) of k numbered items arranged in a line on a set of permutations of n numbered items arranged in a line. - _Igor Victorovich Statsenko_, Oct 13 2023
%C A098361 The numbers T(n,k) also appear in the denominators of the partial fraction expansion of 1/(x*(x+1)*...*(x+n)) = Sum_{k=0..n} (-1)^k * 1/(T(n,k)*(x+k)). - _Dimitri Papadopoulos_, Nov 30 2023
%C A098361 It follows from the previous comment that the numbers T(n,k) also appear in the denominators of the coefficients of the logarithms of the integral of 1/(x*(x+1)*...*(x+n)): c + Sum{k=0...n} (-1)^k * 1/(T(n,k)) * ln(x+k). - _Colin Linzer_, Dec 18 2024
%D A098361 R. Ghanem and P. Spanos, Stochastic Finite Elements: A Spectral Approach (Revised Edition), 2003, Ch 2.4 Table 2-2.
%D A098361 Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 116-125.
%D A098361 Ivan Niven, Irrational Numbers, Math. Assoc. Am., John Wiley and Sons, New York, 2nd printing 1963, pp. 19-21.
%H A098361 Stefano Spezia, <a href="/A098361/b098361.txt">First 101 antidiagonals of the array, flattened</a>
%H A098361 Luis Manuel Rivera, <a href="http://arxiv.org/abs/1406.3081">Integer sequences and k-commuting permutations</a>, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
%H A098361 I. V. Statsenko, <a href="https://aeterna-ufa.ru/sbornik/IN-2023-10-1.pdf#page=7">Problem on variants of cluster formation at permutations in ordered structures</a>, Innovation science No 10-1, State Ufa, Aeterna Publishing House, 2023, pp. 7-10. In Russian.
%F A098361 T(n, k) = k!*(n-k)! =  n!/C(n,k), (0<=k<=n). - _Peter Luschny_, Aug 23 2010
%F A098361 Array A(n, k) = n!*k! = (k+n)!/binomial(k+n,n). - _R. J. Mathar_, Dec 10 2010
%F A098361 E.g.f. as array: 1/((1 - x)*(1 - y)). - _Stefano Spezia_, Jul 10 2020
%e A098361 The array A(n, k) starts in row n=0 with columns k >= 0 as:
%e A098361        1,      1,      2,       6,      24,      120, ...
%e A098361        1,      1,      2,       6,      24,      120, ...
%e A098361        2,      2,      4,      12,      48,      240, ...
%e A098361        6,      6,     12,      36,     144,      720, ...
%e A098361       24,     24,     48,     144,     576,     2880, ...
%e A098361      120,    120,    240,     720,    2880,    14400, ...
%e A098361      720,    720,   1440,    4320,   17280,    86400, ...
%e A098361     5040,   5040,  10080,   30240,  120960,   604800, ...
%e A098361    40320,  40320,  80640,  241920,  967680,  4838400, ...
%e A098361   362880, 362880, 725760, 2177280, 8709120, 43545600, ...
%e A098361   ...
%e A098361 The triangle T(n, k) begins:
%e A098361 n\k       0      1     2     3     4     5     6     7     8      9      10...
%e A098361 0:        1
%e A098361 1:        1      1
%e A098361 2:        2      1     2
%e A098361 3:        6      2     2     6
%e A098361 4:       24      6     4     6    24
%e A098361 5:      120     24    12    12    24   120
%e A098361 6:      720    120    48    36    48   120   720
%e A098361 7:     5040    720   240   144   144   240   720  5040
%e A098361 8:    40320   5040  1440   720   576   720  1440  5040 40320
%e A098361 9:   362880  40320 10080  4320  2880  2880  4320 10080 40320 362880
%e A098361 10: 3628800 362880 80640 30240 17280 14400 17280 30240 80640 362880 3628800
%e A098361 ... - _Wolfdieter Lang_, May 07 2018
%p A098361 seq(print(seq(k!*(n-k)!,k=0..n)),n=0..6); # _Peter Luschny_, Aug 23 2010
%t A098361 Table[(n+1)!*Beta[n-k+1, k+1], {n,0,12}, {k,0,n}]//Flatten (* _Roger L. Bagula_, Oct 29 2008 *)
%o A098361 (Magma) F:=Factorial; [F(n-k)*F(k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jul 12 2022
%o A098361 (SageMath) f=factorial; flatten([[f(n-k)*f(k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jul 12 2022
%Y A098361 Row sums A003149.
%Y A098361 Cf. A003991, A098358, A098359, A098360.
%K A098361 nonn,tabl
%O A098361 0,4
%A A098361 Douglas Stones (dssto1(AT)student.monash.edu.au), Sep 04 2004