cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098384 Triangle read by rows of coefficients used to generate diagonals of ordered factorizations as displayed in A098348.

This page as a plain text file.
%I A098384 #5 Apr 20 2012 11:28:56
%S A098384 1,3,2,13,18,8,75,158,144,48,541,1530,2120,1440,384,4683,16622,30960,
%T A098384 31920,17280,3840
%N A098384 Triangle read by rows of coefficients used to generate diagonals of ordered factorizations as displayed in A098348.
%C A098384 Note that the table includes the well-known sequence (A000165) discussed by Gordon on pages 636-645 of AMM 106 (1999).
%F A098384 From Peter Bala, Apr 20 2012: (Start)
%F A098384 The following formulas are all conjectural:
%F A098384 T(n,k) = 2^k*sum {i = k+1..n+1} binomial(i,k+1)*(i-1)!*Stirling2(n+1,i) = 1/(k+1)*A194649(n+1,k).
%F A098384 Recurrence equation:
%F A098384 T(n,k) = 2*k*T(n-1,k-1) + 3*(k+1)*T(n-1,k) + (k+2)*T(n-1,k+1).
%F A098384 E.g.f.: exp(x)/((2-exp(x))*(2*t+2-(2*t+1)*exp(x))) = 1 + (3+2*t)*x + (13+18*t+8*t^2)*x^2/2! + ....
%F A098384 Column n generating function: 2^n*exp(x)*(1-exp(x))^n/(exp(x)-2)^(n+2) for n >= 0.
%F A098384 (End)
%e A098384 The table begins:
%e A098384 1
%e A098384 3 2
%e A098384 13 18 8
%e A098384 75 158 144 48
%e A098384 541 1530 2120 1440 384
%e A098384 The binomial transform of (13,18,8) yields 13,31,57,91,...
%e A098384 The binomial transform of 13,31,57,91,... yields 13,44,132,368,... A098385
%Y A098384 Cf. A000165, A052876, A098348, A098385. A194649.
%K A098384 nonn,tabl
%O A098384 0,2
%A A098384 _Alford Arnold_, Sep 06 2004