This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098402 #37 Jan 16 2024 01:38:17 %S A098402 1,4,48,640,8960,129024,1892352,28114944,421724160,6372720640, %T A098402 96865353728,1479398129664,22684104654848,348986225459200, %U A098402 5384358907084800,83278084429578240,1290810308658462720,20045524793284362240,311819274562201190400,4857816066863765913600 %N A098402 a(n) = (0^n + 4^n * binomial(2*n,n))/2. %C A098402 It seems that a(n) is the number of pairs of binary vectors of length 2*n which are orthogonal. (Define binary vectors here to have components of value +1 or -1. There are no pairs of binary vectors of odd length which are orthogonal.) For example, the a(1) = 4 pairs of binary vectors of length 2 are (-1,-1) and (1,-1), (-1,-1) and (-1,1), (1,-1) and (1,1), (-1,1) and (1,1). Tested up to and including a(8). - _R. J. Mathar_, Apr 15 2013 %C A098402 Tested up to and including a(210). - _R. H. Hardin_, May 08 2013 %H A098402 G. C. Greubel, <a href="/A098402/b098402.txt">Table of n, a(n) for n = 0..825</a> %F A098402 G.f.: 8*x/( sqrt(1 - 16*x)*(1 - sqrt(1 - 16*x)) ). %F A098402 a(n+1) = 4*A098400(n). %F A098402 n*a(n) - 8*(2*n-1)*a(n-1) = 0. - _R. J. Mathar_, Nov 09 2012 %F A098402 a(n) ~ 16^n/(2*sqrt(Pi*n)). - _Ilya Gutkovskiy_, Aug 03 2016 %F A098402 a(n) = A055372(2*n,n). - _Alois P. Heinz_, Jan 21 2020 %F A098402 From _Amiram Eldar_, Jan 16 2024: (Start) %F A098402 Sum_{n>=0} 1/a(n) = 17/15 + 32*arcsin(1/4)/(15*sqrt(15)). %F A098402 Sum_{n>=0} (-1)^n/a(n) = 15/17 - 32*arcsinh(1/4)/(17*sqrt(17)). (End) %t A098402 Table[(Boole[n == 0] + 4^n Binomial[2 n, n])/2, {n, 0, 18}] (* or *) %t A098402 CoefficientList[Series[8 x/(# (1 - #)) &@ Sqrt[1 - 16 x], {x, 0, 18}], x] (* _Michael De Vlieger_, Aug 03 2016 *) %o A098402 (Magma) [(0^n + 4^n*(n+1)*Catalan(n))/2: n in [0..40]]; // _G. C. Greubel_, Dec 27 2023 %o A098402 (SageMath) [(4^n*binomial(2*n,n) + int(n==0))/2 for n in range(41)] # _G. C. Greubel_, Dec 27 2023 %Y A098402 Cf. A055372, A069723, A069720, A098400, A098401. %K A098402 easy,nonn %O A098402 0,2 %A A098402 _Paul Barry_, Sep 06 2004