cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098420 Members of prime triples (p,q,r) with p < q < r = p + 6.

This page as a plain text file.
%I A098420 #18 Feb 16 2025 08:32:54
%S A098420 5,7,11,13,17,19,23,37,41,43,47,67,71,73,97,101,103,107,109,113,191,
%T A098420 193,197,199,223,227,229,233,277,281,283,307,311,313,317,347,349,353,
%U A098420 457,461,463,467,613,617,619,641,643,647,821,823,827,829,853,857,859,863
%N A098420 Members of prime triples (p,q,r) with p < q < r = p + 6.
%C A098420 A098418(a(n)) > 0; complement of A098419 in A000040.
%C A098420 Union of A007529, A098414 and A098415.
%H A098420 Paul Shubhankar, <a href="https://www.erpublication.org/published_paper/IJETR011954.pdf">Ten Problems of Number Theory</a>, International Journal of Engineering and Technical Research (IJETR), ISSN: 2321-0869, Volume-1, Issue-9, November 2013
%H A098420 Paul Shubhankar, <a href="https://www.erpublication.org/published_paper/IJETR012013.pdf">Legendre, Grimm, Balanced Prime, Prime triple, Polignac's conjecture, a problem and 17 tips with proof to solve problems on number theory</a>, International Journal of Engineering and Technical Research (IJETR), Volume-1, Issue-10, December 2013.
%H A098420 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeTriplet.html">Prime Triplet</a>
%t A098420 lst={};Do[p=Prime[n];If[PrimeQ[p2=p+2]&&PrimeQ[p6=p+6], AppendTo[lst, p];AppendTo[lst, p2];AppendTo[lst, p6]];If[PrimeQ[p4=p+4]&&PrimeQ[p6=p+6], AppendTo[lst, p];AppendTo[lst, p4];AppendTo[lst, p6]], {n, 6!}];Union[lst] (* _Vladimir Joseph Stephan Orlovsky_, Sep 25 2008 *)
%Y A098420 Cf. A000040, A007529, A098414, A098415, A098418, A098419.
%K A098420 nonn
%O A098420 1,1
%A A098420 _Reinhard Zumkeller_, Sep 07 2004