cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098432 Coefficients of polynomials S(n,x) related to Springer numbers.

Original entry on oeis.org

1, 8, 7, 128, 304, 177, 3072, 13952, 21080, 10199, 98304, 724992, 2016000, 2441056, 1051745, 3932160, 42762240, 187643904, 407505664, 428605352, 169913511, 188743680, 2839019520, 17974591488, 60428242944, 111985428352
Offset: 0

Views

Author

Ralf Stephan, Sep 07 2004

Keywords

Examples

			S(0,x) = 1,
S(1,x) = 8*x + 7,
S(2,x) = 128*x^2 + 304*x + 177,
S(3,x) = 3072*x^3 + 13952*x^2 + 21080*x + 10199.
		

Crossrefs

Cf. A001586. S(n, 1/2) = A000464(n+1), S(n, -1/2) = A000281(n).
Leading coefficients are A051189. Constant terms are in A098433.
Cf. A001586. S(n, 1/2) = A000464(n), S(n, -1/2) = A000281(n).

Programs

  • PARI
    S(n,x)=if(n<1,1,(2*x+2)*(2*x+4)*S(n-1,x+2)-(2*x+1)^2*S(n-1,x))

Formula

Recurrence: S(0, x)=1, S(n, x)=(2x+2)(2x+4)S(n-1, x+2)-(2x+1)^2S(n-1, x).
G.f.: Sum[n>=0, S(n, x)t^n] = 1/(1+t-4*2(x+1)t/(1-4*2(x+2)t/(1+t-4*4(x+3)t/(1-4+4(x+4)t/...)))).