cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098434 Triangle read by rows: coefficients of Genocchi polynomials G(n,x); n times the Euler polynomials.

Original entry on oeis.org

1, 2, -1, 3, -3, 0, 4, -6, 0, 1, 5, -10, 0, 5, 0, 6, -15, 0, 15, 0, -3, 7, -21, 0, 35, 0, -21, 0, 8, -28, 0, 70, 0, -84, 0, 17, 9, -36, 0, 126, 0, -252, 0, 153, 0, 10, -45, 0, 210, 0, -630, 0, 765, 0, -155, 11, -55, 0, 330, 0, -1386, 0, 2805, 0, -1705, 0, 12, -66, 0, 495
Offset: 1

Views

Author

Ralf Stephan, Sep 08 2004

Keywords

Comments

The Genocchi numbers A001489 appear as constant term of every second polynomial and as the negative sum of its coefficients.

Examples

			G(1,x) = 1
G(2,x) = 2*x - 1
G(3,x) = 3*x^2 - 3*x
G(4,x) = 4*x^3 - 6*x^2 + 1
G(5,x) = 5*x^4 - 10*x^3 + 5*x
G(6,x) = 6*x^5 - 15*x^4 + 15*x^2 - 3
G(7,x) = 7*x^6 - 21*x^5 + 35*x^3 - 21*x
		

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 2n-d ed.; Addison-Wesley, 1994, pp. 573-574.

Crossrefs

A001489(n) = G(2n, 0) = -G(2n, 1). Cf. A081733.

Programs

  • Maple
    p := proc(n,x) local j,k; add(binomial(n,k)*add(binomial(k,j)*2^j*bernoulli(j), j=0..k-1)*x^(n-k),k=0..n) end;
    seq(print(sort(p(n,x))),n=1..8); # Peter Luschny, Jul 07 2009
  • Mathematica
    g[n_, x_] := Sum[ k Binomial[n, k] EulerE[k-1, 0] x^(n-k), {k, 1, n}]; Table[ CoefficientList[g[n, x], x] // Reverse, {n, 1, 12}] // Flatten (* Jean-François Alcover, May 23 2013, after Peter Luschny *)
  • PARI
    G(n)=subst(polcoeff(serlaplace(2*x*exp(x*y)/(exp(x)+1)),n),y,x)

Formula

E.g.f.: Sum_{n >= 1} G(n, x)*t^n/n! = 2*t*e^(x*t)/(1 + e^t).
G(n, x) = Sum_{k=1..n} k*C(n, k)* Euler(k-1, 0)*x^(n-k). - Peter Luschny, Jul 13 2009
G(n, x) = n*Euler(n-1,x) = Sum_{k=0..n} binomial(n,k)*Bernoulli(k)*2*(1-2^k)*x^(n-k), with the Euler polynomials Euler(n,x) (see A060096/A060097) and Bernoulli numbers A027641/A027642. See the Graham et al. reference, pp. 573-574, Exercise 7.52. - Wolfdieter Lang, Mar 13 2017