This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098435 #18 Jan 22 2020 21:09:01 %S A098435 1,-1,1,2,-3,1,-8,13,-6,1,56,-92,45,-10,1,-608,1000,-493,115,-15,1, %T A098435 9440,-15528,7662,-1799,245,-21,1,-198272,326144,-160944,37817,-5180, %U A098435 462,-28,1,5410688,-8900224,4392080,-1032088,141465,-12684,798,-36,1 %N A098435 Triangle of Salie numbers T(n,k) for negative n,k, n < k. %C A098435 Inverse matrix of A054142. - _Paul Barry_, Jan 21 2005 %C A098435 Essentially the same as the triangle giving by [0,-1,-1,-4,-4,-9,-9,-16,-16,-25,...] DELTA[1,0,1,0,1,0,1,0,1,0,...] = 1; 0,1; 0,-1,1; 0,2,-3,1; 0,-8,13,-6,1; 0,56,-92,45,-10,1; ... where DELTA is the operator defined in A084938. - _Philippe Deléham_, Aug 30 2006 %H A098435 D. Dumont and J. Zeng, <a href="http://math.univ-lyon1.fr/homes-www/zeng/public_html/paper/publication.html">Polynomes d'Euler et les fractions continues de Stieltjes-Rogers</a>, Ramanujan J. 2 (1998) 3, 387-410. %F A098435 See A065547 for formulas. %e A098435 1; %e A098435 -1, 1; %e A098435 2, -3, 1; %e A098435 -8, 13, -6, 1; %e A098435 56, -92, 45, -10, 1; %t A098435 rows = 9; A054142 = Table[ PadRight[ Table[ Binomial[2*n-k, k], {k, 0, n}], rows], {n, 0, rows-1}]; inv = Inverse[A054142]; Table[ Take[inv[[n]], n], {n, 1, rows}] // Flatten (* _Jean-François Alcover_, Oct 02 2013, after _Paul Barry_ *) %Y A098435 T(-1, k) = (-1)^k*A005439(k-1). Row sums are zero. %K A098435 tabl,sign %O A098435 1,4 %A A098435 _Ralf Stephan_, Sep 08 2004