cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098436 Triangle of 3rd central factorial numbers T(n,k).

Original entry on oeis.org

1, 1, 1, 1, 9, 1, 1, 73, 36, 1, 1, 585, 1045, 100, 1, 1, 4681, 28800, 7445, 225, 1, 1, 37449, 782281, 505280, 35570, 441, 1, 1, 299593, 21159036, 33120201, 4951530, 130826, 784, 1, 1, 2396745, 571593565, 2140851900, 652061451, 33209946, 399738, 1296, 1
Offset: 0

Views

Author

Ralf Stephan, Sep 08 2004

Keywords

Examples

			  1;
  1,   1;
  1,   9,    1;
  1,  73,   36,   1;
  1, 585, 1045, 100, 1;
  ...
		

Crossrefs

First column is A023001, first diagonal is A000537.
Row sums are in A098437.
Replace in recurrence (k+1)^3 with k: A008277; with k^2: A008957 (note offsets).

Programs

  • Maple
    A098436 := proc(n,k)
        option remember;
        if k=0 or k = n then
            1;
        else
            (k+1)^3*procname(n-1,k)+procname(n-1,k-1) ;
        end if;
    end proc:
    seq(seq( A098436(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jan 13 2025
  • Mathematica
    T[n_, n_] = 1;
    T[n_ /; n>=0, k_] /; 0<=k<=n := T[n, k] = (k+1)^3 T[n-1, k]+T[n-1, k-1];
    T[, ] = 0;
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 08 2022 *)

Formula

Recurrence: T(n, k) = (k+1)^3*T(n-1, k) + T(n-1, k-1), T(0, 0)=1.