A098436 Triangle of 3rd central factorial numbers T(n,k).
1, 1, 1, 1, 9, 1, 1, 73, 36, 1, 1, 585, 1045, 100, 1, 1, 4681, 28800, 7445, 225, 1, 1, 37449, 782281, 505280, 35570, 441, 1, 1, 299593, 21159036, 33120201, 4951530, 130826, 784, 1, 1, 2396745, 571593565, 2140851900, 652061451, 33209946, 399738, 1296, 1
Offset: 0
Examples
1; 1, 1; 1, 9, 1; 1, 73, 36, 1; 1, 585, 1045, 100, 1; ...
Links
- M. Domaratzki, A Generalization of the Genocchi Numbers with Applications to Enumeration of Finite Automata, Technical Report No. 2001-449, September 2001, 11 pages.
- John Riordan, Letter, Apr 28 1976.
Crossrefs
Programs
-
Maple
A098436 := proc(n,k) option remember; if k=0 or k = n then 1; else (k+1)^3*procname(n-1,k)+procname(n-1,k-1) ; end if; end proc: seq(seq( A098436(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Jan 13 2025
-
Mathematica
T[n_, n_] = 1; T[n_ /; n>=0, k_] /; 0<=k<=n := T[n, k] = (k+1)^3 T[n-1, k]+T[n-1, k-1]; T[, ] = 0; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 08 2022 *)
Formula
Recurrence: T(n, k) = (k+1)^3*T(n-1, k) + T(n-1, k-1), T(0, 0)=1.