A098444 Expansion of 1/sqrt(1-6x-11x^2).
1, 3, 19, 117, 771, 5193, 35629, 247467, 1734931, 12250953, 87006249, 620818047, 4447016781, 31959556983, 230331965379, 1664043517557, 12047551338771, 87387014213433, 634918255153369, 4619923954541247, 33661450900419001
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Hacène Belbachir, Abdelghani Mehdaoui, László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
Programs
-
Mathematica
Table[SeriesCoefficient[1/Sqrt[1-6*x-11*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 15 2012 *)
-
PARI
x='x+O('x^66); Vec(1/sqrt(1-6*x-11*x^2)) \\ Joerg Arndt, May 11 2013
Formula
E.g.f.: exp(3x)*BesselI(0, 2*sqrt(5)*x)
D-finite with recurrence: n*a(n) = 3*(2*n-1)*a(n-1) + 11*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 15 2012
a(n) ~ sqrt(50+15*sqrt(5))*(3+2*sqrt(5))^n/(10*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012
Comments