cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098444 Expansion of 1/sqrt(1-6x-11x^2).

Original entry on oeis.org

1, 3, 19, 117, 771, 5193, 35629, 247467, 1734931, 12250953, 87006249, 620818047, 4447016781, 31959556983, 230331965379, 1664043517557, 12047551338771, 87387014213433, 634918255153369, 4619923954541247, 33661450900419001
Offset: 0

Views

Author

Paul Barry, Sep 07 2004

Keywords

Comments

Binomial transform of A084770. Second binomial transform of A098264. Binomial transform is A098443.
Coefficient of x^n in (1 + 3 x + 5 x^2)^n = number of paths from the origin to (n,0) with steps U=(1,1), H=(1,0) and D=(1,-1); U can have 5 colors and H can have 3 colors. - N-E. Fahssi, Jan 28 2008

Programs

  • Mathematica
    Table[SeriesCoefficient[1/Sqrt[1-6*x-11*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 15 2012 *)
  • PARI
    x='x+O('x^66); Vec(1/sqrt(1-6*x-11*x^2)) \\ Joerg Arndt, May 11 2013

Formula

E.g.f.: exp(3x)*BesselI(0, 2*sqrt(5)*x)
D-finite with recurrence: n*a(n) = 3*(2*n-1)*a(n-1) + 11*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 15 2012
a(n) ~ sqrt(50+15*sqrt(5))*(3+2*sqrt(5))^n/(10*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012