A098450 Largest n-digit semiprime.
9, 95, 998, 9998, 99998, 999997, 9999998, 99999997, 999999991, 9999999997, 99999999997, 999999999997, 9999999999989, 99999999999997, 999999999999998, 9999999999999994, 99999999999999989, 999999999999999993, 9999999999999999991, 99999999999999999983
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..100
Crossrefs
Programs
-
Mathematica
NextSemiPrime[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sp = n + sgn; While[c < Abs[k], While[ PrimeOmega[sp] != 2, If[sgn < 0, sp--, sp++]]; If[sgn < 0, sp--, sp++]; c++]; sp + If[sgn < 0, 1, -1]]; f[n_] := NextSemiPrime[10^n, -1]; Array[f, 18] (* Robert G. Wilson v, Dec 18 2012 *)
-
PARI
apply( A098450(n)={n=10^n;until(bigomega(n-=1)==2,);n}, [1..20]) \\ M. F. Hasler, Jan 01 2021
-
Python
from sympy import factorint def semiprime(n): f = factorint(n); return sum(f[p] for p in f) == 2 def a(n): an = 10**n - 1 while not semiprime(an): an -= 1 return an print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Apr 10 2021
Formula
a(n) = 10^n - A119320(n). - Amiram Eldar, Sep 18 2021