cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A098469 A sequence related to the even-indexed Catalan numbers.

Original entry on oeis.org

1, 2, 6, 20, 78, 332, 1516, 7240, 35734, 180620, 929940, 4858328, 25687052, 137177016, 738819672, 4008435984, 21886788582, 120178329740, 663179894788, 3675923244856, 20456707469540, 114254175491304, 640223315385576
Offset: 0

Views

Author

Paul Barry, Sep 09 2004, corrected Mar 31 2007

Keywords

Comments

Binomial transform of A098465. Second binomial transform of (1,0,2,0,14,0,132,0,1430,...) (set odd-indexed Catalan numbers to zero).

Crossrefs

Cf. A048990.

Programs

  • Mathematica
    CoefficientList[Series[(Sqrt[1+2*x]-Sqrt[1-6*x])/(4*x*Sqrt[1-2*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 24 2012 *)
  • PARI
    x='x+O('x^66); Vec((sqrt(1+2*x)-sqrt(1-6*x))/(4*x*sqrt(1-2*x))) \\ Joerg Arndt, May 11 2013

Formula

G.f.: (sqrt(1+2*x) - sqrt(1-6*x))/(4*x*sqrt(1-2*x)).
a(n) = Sum_{k=0..floor(n/2)} C(n,2k)*C(k)*2^(n-2k).
a(n) = Sum_{k=0..n} C(n,k)*2^(n-k)*C(k)*(1-(-1)^k)/2.
Recurrence: n*(n+1)*a(n) = 4*n*(2*n-1)*a(n-1) - 4*(2*n^2 - 4*n + 3)*a(n-2) - 16*(n-2)*(2*n-3)*a(n-3) + 48*(n-3)*(n-2)*a(n-4). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ 3*6^(n+1/2)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 24 2012
Showing 1-1 of 1 results.