This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098480 #11 Jan 30 2020 21:29:15 %S A098480 1,1,1,5,13,25,65,181,445,1113,2945,7685,19821,51865,136513,358229, %T A098480 942109,2487385,6573825,17387045,46066253,122213913,324512833, %U A098480 862511605,2294698109,6109933657,16280439937,43411979845,115835462445 %N A098480 Expansion of 1/sqrt((1-x)^2-8x^3). %C A098480 1/sqrt((1-x)^2-4rx^3) expands to sum{k=0..floor(n/2), binomial(n-k,k)binomial(n-2k,k)r^k} %H A098480 Michael De Vlieger, <a href="/A098480/b098480.txt">Table of n, a(n) for n = 0..2309</a> %H A098480 Hacène Belbachir, Abdelghani Mehdaoui, László Szalay, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL22/Szalay/szalay42.html">Diagonal Sums in the Pascal Pyramid, II: Applications</a>, J. Int. Seq., Vol. 22 (2019), Article 19.3.5. %F A098480 a(n)=sum{k=0..floor(n/2), binomial(n-k, k)binomial(n-2k, k)2^k}. D-finite with recurrence: n*a(n) +(-2*n+1)*a(n-1) +(n-1)*a(n-2) +4*(-2*n+3)*a(n-3)=0. - _R. J. Mathar_, Nov 10 2014 %t A098480 Array[Sum[Binomial[# - k, k] Binomial[# - 2 k, k] 2^k, {k, 0, #/2}] &, 29, 0] (* _Michael De Vlieger_, Jul 16 2019 *) %Y A098480 Cf. A098479, A098481. %K A098480 easy,nonn %O A098480 0,4 %A A098480 _Paul Barry_, Sep 10 2004