This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098488 #20 May 15 2020 09:07:20 %S A098488 0,1,2,3,4,5,6,7,8,9,19,10,11,12,13,14,15,16,17,18,28,29,20,21,22,23, %T A098488 24,25,26,27,37,38,39,30,31,32,33,34,35,36,46,47,48,49,40,41,42,43,44, %U A098488 45,55,56,57,58,59,50,51,52,53,54,64,65,66,67,68,69,60,61,62 %N A098488 Decimal modular Gray code for n. %C A098488 This is another decimal Gray code that considers that the distance between 9 and 0 is 1. Cyclic for (left-zero-padded) groups of n digits. %H A098488 Reinhard Zumkeller, <a href="/A098488/b098488.txt">Table of n, a(n) for n = 0..10000</a> %H A098488 Martin Cohn, <a href="https://doi.org/10.1016/S0019-9958(63)90119-0">Affine m-ary Gray Codes</a>, Information and Control, volume 6, 1963, pages 70-78. Example 4 column "Gray" is the present sequence. %H A098488 Donald E. Knuth, <a href="http://www-cs-faculty.stanford.edu/~knuth/fasc2a.ps.gz">The Art of Computer Programming, Pre-Fascicle 2A</a>, Draft of Section 7.2.1.1. See subsection "Nonbinary Gray codes" page 18, and exercise 78 page 35 and answer page 54 (modular Gray g overline (k) for the case all m_j=10). %H A098488 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %p A098488 # insert 10 into the second argument of the gray(.,.) function in A105530. - _R. J. Mathar_, Mar 10 2015 %t A098488 AltGray[In_] := { tIn = IntegerDigits[In]; Ac = 0; Do[tIn[[z]] = Mod[tIn[[z]] - Ac, 10]; Ac += tIn[[z]], {z, 1, Length[tIn]}]; FromDigits[tIn, 10] } %o A098488 (Haskell) %o A098488 import Data.List (elemIndex); import Data.Maybe (fromJust) %o A098488 a098488 = fromJust . (`elemIndex` a226134_list) %o A098488 -- _Reinhard Zumkeller_, Jun 03 2013 %o A098488 (PARI) a(n) = my(v=digits(n)); forstep(i=#v,2,-1, v[i]=(v[i]-v[i-1])%10); fromdigits(v); \\ _Kevin Ryde_, May 15 2020 %Y A098488 Cf. A003100. %Y A098488 Cf. A226134 (inverse). %K A098488 base,nonn %O A098488 0,3 %A A098488 Jaume Simon Gispert (jaume(AT)nuem.com), Sep 10 2004