A098495 Array T(r,c) read by antidiagonals: values of triangle A098493 interpreted as polynomials, r >= 0.
1, 1, 0, 1, -1, -1, 1, -2, -1, -1, 1, -3, 1, 1, 0, 1, -4, 5, 1, 1, 1, 1, -5, 11, -7, -2, -1, 1, 1, -6, 19, -29, 9, 1, -1, 0, 1, -7, 29, -71, 76, -11, 1, 1, -1, 1, -8, 41, -139, 265, -199, 13, -2, 1, -1, 1, -9, 55, -239, 666, -989, 521, -15, 1, -1, 0, 1, -10, 71, -377, 1393, -3191, 3691, -1364, 17, 1, -1, 1, 1, -11, 89, -559
Offset: 0
Examples
Array begins 1, 0, -1, -1, 0, 1, 1, 0, -1, ... 1, -1, -1, 1, 1, -1, -1, 1, 1, ... 1, -2, 1, 1, -2, 1, 1, -2, 1, ... 1, -3, 5, -7, 9, -11, 13, -15, ... 1, -4, 11, -29, 76, -199, 521, ... 1, -5, 19, -71, 265, -989, 3691, ... ...
Links
- Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114.
Crossrefs
Programs
-
Mathematica
T[r_, 1] := 1; T[r_, 2] := -r - 1; T[r_, c_] := -r*T[r, c - 1] - T[r, c - 2]; Flatten[ Table[ T[n - i, i], {n, 0, 11}, {i, n + 1}]] (* Robert G. Wilson v, May 10 2005 *)
-
PARI
{ t(r,c)=if(c>r||c<0||r<0,0,if(c>=r-1,(-1)^r*if(c==r,1,-c),if(r==1,0,if(c==0,t(r-1,0)-t(r-2,0),t(r-1,c)-t(r-2,c)-t(r-1,c-1))))) } T(r,c)=sum(i=0,c,t(c,i)*r^i); matrix(5,5,n,k,T(n-1,k-1))
Formula
Recurrence: T(r, 1) = 1, T(r, 2) = -r-1, T(r, c) = -rT(r, c-1) - T(r, c-2). (Corrected Oct 19 2004)
Extensions
More terms from Robert G. Wilson v, May 10 2005