A098520 E.g.f. exp(x)*BesselI(1,4*x)/2.
0, 1, 2, 15, 52, 285, 1206, 6027, 27560, 134073, 633130, 3062279, 14676828, 71045845, 343195230, 1665555075, 8084777040, 39343835505, 191627687250, 934855945215, 4565076327300, 22318461756045, 109211684822790, 534907610833275, 2621997452787192, 12862364386480425, 63140696801700986
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
Programs
-
Maple
a := n -> simplify(2^(n-1)*GegenbauerC(n-1, -n, -1/4)): seq(a(n), n=0..26); # Peter Luschny, May 08 2016
-
Mathematica
Table[SeriesCoefficient[2*x/(1-2*x-15*x^2+(1-x)*Sqrt[1-2*x-15*x^2]),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 15 2012 *)
-
PARI
x='x+O('x^66); concat([0],Vec(2*x/(1-2*x-15*x^2+(1-x)*sqrt(1-2*x-15*x^2)))) \\ Joerg Arndt, May 11 2013
Formula
G.f.: 2*x/(1-2*x-15*x^2+(1-x)*sqrt(1-2*x-15*x^2)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(n-k, k+1)4^k.
Conjecture: (n-1)*(n+1)*a(n) - n*(2n-1)*a(n-1) - 15*n*(n-1)*a(n-2) = 0. - R. J. Mathar, Dec 11 2011
a(n) ~ 5^(n+1/2)/(4*sqrt(2*Pi*n)). - Vaclav Kotesovec, Oct 15 2012
a(n) = 2^(n-1)*GegenbauerC(n-1, -n, -1/4). - Peter Luschny, May 08 2016
Comments