cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098520 E.g.f. exp(x)*BesselI(1,4*x)/2.

Original entry on oeis.org

0, 1, 2, 15, 52, 285, 1206, 6027, 27560, 134073, 633130, 3062279, 14676828, 71045845, 343195230, 1665555075, 8084777040, 39343835505, 191627687250, 934855945215, 4565076327300, 22318461756045, 109211684822790, 534907610833275, 2621997452787192, 12862364386480425, 63140696801700986
Offset: 0

Views

Author

Paul Barry, Sep 12 2004

Keywords

Comments

Binomial transform of e.g.f. BesselI(1,4x)/2, or {0,1,0,12,0,160,0,2240,0,32256,0,...} with g.f. 2x/(1-16x^2+sqrt(1-16x^2)). The binomial transform of e.g.f. BesselI(1,2*sqrt(r)x)/sqrt(r) with g.f. 2x/(1-(2*sqrt(r)x)^2+sqrt(1-(2*sqrt(r)x)^2)) has g.f. 2x/(1-2x-((2*sqrt(r))^2-1)x^2+(1-x)*sqrt(1-2x-((2*sqrt(r))^2-1)x^2)).

Programs

  • Maple
    a := n -> simplify(2^(n-1)*GegenbauerC(n-1, -n, -1/4)):
    seq(a(n), n=0..26); # Peter Luschny, May 08 2016
  • Mathematica
    Table[SeriesCoefficient[2*x/(1-2*x-15*x^2+(1-x)*Sqrt[1-2*x-15*x^2]),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 15 2012 *)
  • PARI
    x='x+O('x^66); concat([0],Vec(2*x/(1-2*x-15*x^2+(1-x)*sqrt(1-2*x-15*x^2)))) \\ Joerg Arndt, May 11 2013

Formula

G.f.: 2*x/(1-2*x-15*x^2+(1-x)*sqrt(1-2*x-15*x^2)).
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(n-k, k+1)4^k.
Conjecture: (n-1)*(n+1)*a(n) - n*(2n-1)*a(n-1) - 15*n*(n-1)*a(n-2) = 0. - R. J. Mathar, Dec 11 2011
a(n) ~ 5^(n+1/2)/(4*sqrt(2*Pi*n)). - Vaclav Kotesovec, Oct 15 2012
a(n) = 2^(n-1)*GegenbauerC(n-1, -n, -1/4). - Peter Luschny, May 08 2016