This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098534 #14 Sep 08 2022 08:45:15 %S A098534 0,1,1,2,3,2,2,4,3,4,7,5,6,5,5,4,6,4,4,8,6,8,8,7,6,10,7,8,15,11,14,10, %T A098534 12,10,13,11,12,11,11,10,12,10,10,11,9,8,14,10,12,10,10,8,12,8,8,16, %U A098534 12,16,13,14,12,17,14,16,18,16,16,17,15,14,17,13,12,22,16,20,18,17,14,22 %N A098534 Mod 3 analog of Stern's diatomic series. %C A098534 Essentially diagonal sums of Pascal's triangle modulo 3. %H A098534 G. C. Greubel, <a href="/A098534/b098534.txt">Table of n, a(n) for n = 0..10000</a> %F A098534 a(n) = Sum_{k=0..floor((n-1)/2)} mod(binomial(n-k-1, k), 3). %t A098534 Table[Sum[Mod[Binomial[n - k - 1, k], 3], {k, 0, Floor[(n - 1)/2]}], {n, 0, 100}] (* _G. C. Greubel_, Jan 17 2018 *) %o A098534 (PARI) for(n=0,100, print1(sum(k=0,floor((n-1)/2), lift(Mod(binomial(n-k-1,k),3))), ", ")) \\ _G. C. Greubel_, Jan 17 2018 %o A098534 (Magma) [0] cat [(&+[Binomial(n-k-1,k) mod 3: k in [0..Floor((n-1)/2)]]): n in [1..100]]; // _G. C. Greubel_, Jan 17 2018 %Y A098534 Cf. A002487, A051638. %K A098534 easy,nonn %O A098534 0,4 %A A098534 _Paul Barry_, Sep 13 2004