cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098535 Expansion of (1+x)^(1/3)/(1+x-9*x^4)^(1/3).

This page as a plain text file.
%I A098535 #9 Sep 08 2022 08:45:15
%S A098535 1,0,0,0,3,-3,3,-3,21,-39,57,-75,219,-489,885,-1407,3000,-6609,13179,
%T A098535 -23655,46353,-96960,198534,-381504,742638,-1504011,3071973,-6096117,
%U A098535 12008415,-24042522,48733248,-97896198,195048966,-390235269
%N A098535 Expansion of (1+x)^(1/3)/(1+x-9*x^4)^(1/3).
%C A098535 Binomial transform is A098536.
%H A098535 G. C. Greubel, <a href="/A098535/b098535.txt">Table of n, a(n) for n = 0..1000</a>
%t A098535 CoefficientList[Series[(1+x)^(1/3)/(1+x-9*x^4)^(1/3), {x,0,50}], x] (* _G. C. Greubel_, Jan 17 2018 *)
%o A098535 (PARI) x='x+O('x^30); Vec((1+x)^(1/3)/(1+x-9*x^4)^(1/3)) \\ _G. C. Greubel_, Jan 17 2018
%o A098535 (Magma) Q:=Rationals(); R<x>:=PowerSeriesRing(Q,30); Coefficients(R!((1+x)^(1/3)/(1+x-9*x^4)^(1/3))); // _G. C. Greubel_, Jan 17 2018
%K A098535 easy,sign
%O A098535 0,5
%A A098535 _Paul Barry_, Sep 13 2004