cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098539 Lower triangular matrix T, read by rows, that shifts left one column under the matrix square of T, with T(n,0)=T(n,1) for n>0 and T(n,n)=1 for n>=0.

This page as a plain text file.
%I A098539 #7 Jun 13 2017 22:13:27
%S A098539 1,1,1,2,2,1,6,6,4,1,26,26,20,8,1,166,166,140,72,16,1,1626,1626,1460,
%T A098539 888,272,32,1,25510,25510,23884,16392,6256,1056,64,1,664666,664666,
%U A098539 639156,479736,215696,46816,4160,128,1,29559718,29559718,28895052
%N A098539 Lower triangular matrix T, read by rows, that shifts left one column under the matrix square of T, with T(n,0)=T(n,1) for n>0 and T(n,n)=1 for n>=0.
%C A098539 Column 0 forms A002449, the number of different types of binary trees of height n. Row sums form A098540. Column 1 equals A098541. As a matrix, T satisfies [T^2](n,k) = T(n+1,k+1) for all n,k>=0, where [T^2] denotes the matrix square of T, with T(0,k)=[T^2](k,0) and T(k,k)=1 for all k>=0. This is a variant of triangle A078121.
%F A098539 T(n, 0) = A002449(n), T(n, n)=1 for n>=0; T(n, 1)=T(n, 0) for n>0.
%e A098539 Rows of T begin:
%e A098539 [1],
%e A098539 [1,1],
%e A098539 [2,2,1],
%e A098539 [6,6,4,1],
%e A098539 [26,26,20,8,1],
%e A098539 [166,166,140,72,16,1],
%e A098539 [1626,1626,1460,888,272,32,1],
%e A098539 [25510,25510,23884,16392,6256,1056,64,1],
%e A098539 [664666,664666,639156,479736,215696,46816,4160,128,1],...
%e A098539 Matrix square T^2 begins:
%e A098539 [1],
%e A098539 [2,1],
%e A098539 [6,4,1],
%e A098539 [26,20,8,1],
%e A098539 [166,140,72,16,1],
%e A098539 [1626,1460,888,272,32,1],...
%e A098539 showing that T^2 is the same as T after shifting left one column.
%o A098539 (PARI) T(n,k)=local(A,B,C,m);A=matrix(1,1);A[1,1]=1; for(m=2,n+1,B=A^2;C=matrix(m,m);for(i=1,m, for(j=1,i, if(i<3 || j==i || j>m-1,C[i,j]=1,if(j==1,C[i,j]=B[i-1,1],C[i,j]=B[i-1,j-1]));)); A=C);A[n+1,k+1]
%Y A098539 Cf. A002449, A098540, A078121.
%K A098539 nonn,tabl
%O A098539 0,4
%A A098539 _Paul D. Hanna_, Sep 13 2004