This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A098562 #25 Jun 25 2022 12:53:54 %S A098562 13,20477,75997,239087,2210983,3579761,29194283,40002073,45448471, %T A098562 55600481,77290091,108095623,114986483,155637463,226226771,302920139, %U A098562 324657881,519681709,551321299,618359839,797005427,944007487,1039681147,1124764853,1923614047,2135308631 %N A098562 Primes that are the sum of the squares of the first k primes for some k. %C A098562 These are the primes arising in A098561. %H A098562 K. D. Bajpai, <a href="/A098562/b098562.txt">Table of n, a(n) for n = 1..15000</a> %e A098562 From _K. D. Bajpai_, Dec 15 2014: (Start) %e A098562 13 is in the sequence because the sum of the squares of the first 2 primes is 2^2 + 3^2 = 4 + 9 = 13, which is prime. %e A098562 20477 is in the sequence because the sum of the squares of the first 18 primes is 2^2 + 3^2 + 5^2 + ... + 59^2 + 61^2 = 4 + 9 + 25 + ... + 3481 + 3721 = 20477, which is prime. %e A098562 (End) %t A098562 Select[Table[Sum[Prime[k]^2, {k, 1, n}], {n, 1000}], PrimeQ] (* _K. D. Bajpai_, Dec 15 2014 *) %o A098562 (PARI) s=0; forprime(p=2, 1e6, t=s+=p^2; if(isprime(t), print1(t,", "))) \\ _K. D. Bajpai_, Dec 15 2014 %Y A098562 Cf. A098561 (corresponding n), A024450 (sum of squares of primes), A066525 (sums of cubes of primes), A013918 (sums of primes). %Y A098562 Cf. A000040, A006567. - _Jonathan Vos Post_, Aug 13 2009 %K A098562 nonn %O A098562 1,1 %A A098562 _Rick L. Shepherd_, Sep 14 2004 %E A098562 a(24)-a(26) from _K. D. Bajpai_, Dec 15 2014 %E A098562 a(42) in b-file corrected by _Andrew Howroyd_, Feb 28 2018