cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A098569 Row sums of the triangle of triangular binomial coefficients given by A098568.

This page as a plain text file.
%I A098569 #138 Aug 26 2025 08:47:59
%S A098569 1,2,5,14,43,143,510,1936,7775,32869,145665,674338,3251208,16282580,
%T A098569 84512702,453697993,2514668492,14367066833,84489482201,510760424832,
%U A098569 3170267071640,20182121448815,131642848217536,878999194493046,6003048930287115,41899203336942661
%N A098569 Row sums of the triangle of triangular binomial coefficients given by A098568.
%C A098569 From _Lara Pudwell_, Oct 23 2008: (Start)
%C A098569 A permutation p avoids a pattern q if it has no subsequence that is order-isomorphic to q. For example, p avoids the pattern 132 if it has no subsequence abc with a < c < b.
%C A098569 Barred pattern avoidance considers permutations that avoid a pattern except in a special case. Given a barred pattern q, we may form two patterns, q1 = the sequence of unbarred letters of q and q2 = the sequence of all letters of q.
%C A098569 A permutation p avoids barred pattern q if every instance of q1 in p is embedded in a copy of q2 in p. In other words, p avoids q1, except in the special case that a copy of q1 is a subsequence of a copy of q2.
%C A098569 For example, if q=5{bar 1}32{bar 4}, then q1=532 and q2 = 51324. p avoids q if every for decreasing subsequence acd of length 3 in p, one can find letters b and e so that the subsequence abcde of p has b < d < c < e < a.
%C A098569 (End)
%C A098569 Also equals the row sums of triangle A131338, which starts with a '1' in row 0 and then for n > 0 row n consists of n '1's followed by the partial sums of the prior row.
%C A098569 Also the number of permutations in S_n avoiding {bar 4}25{bar 1}3 (i.e., every occurrence of 253 is contained in an occurrence of a 42513). - _Lara Pudwell_, Apr 25 2008 (see the Claesson-Dukes-Kitaev article)
%C A098569 From _Frank Ruskey_, Apr 17 2011: (Start)
%C A098569 Number of sequences S = s(1)s(2)...s(n) such that
%C A098569   S contains m 0's,
%C A098569   for 1 <= j <= n, s(j) < j and s(j-s(j)) = 0,
%C A098569   for 1 < j <= n, if s(j) positive, then s(j-1) < s(j).
%C A098569 (End)
%C A098569 a(n) is also the number of length n permutations that simultaneously avoid the bivincular patterns (132,{2},{}) and (132,{},{2}). - _Christian Bean_, Mar 25 2015
%C A098569 a(n) is also the number of length n permutations that simultaneously avoid the bivincular patterns (123,{2},{}) and (123,{},{2}). These are the same as the permutations avoiding {bar 4}23{bar 1}5. - _Christian Bean_, Jun 03 2015
%C A098569 From _Peter R. W. McNamara_, Jun 22 2019: (Start)
%C A098569 a(n) is the number of upper-triangular matrices with nonnegative integer entries whose entries sum to n, and whose diagonal entries are all positive.
%C A098569 a(n) is the number of ascent sequences [d(1), d(2), ..., d(n)] A022493 for which d(k) comes from the interval [0, d(k-1)] or equals 1 + max([d(1), d(2), ..., d(k-1)]) = 1 + asc([d(1), d(2), ..., d(k-1)]) where asc(.) counts the ascents of its argument.  Such sequences are called "self modified ascent sequences" in Bousquet-Mélou et al.
%C A098569 The elements of a (2+2)-free poset can be partitioned into levels, where all elements at the same level have the same strict down-set.  Then a(n) is the number of unlabeled (2+2)-free posets with n elements that contain a chain with exactly one element at each level.
%C A098569 (End)
%H A098569 Andrew Howroyd, <a href="/A098569/b098569.txt">Table of n, a(n) for n = 0..500</a>
%H A098569 Christian Bean, A. Claesson and H. Ulfarsson, <a href="http://arxiv.org/abs/1512.03226">Simultaneous Avoidance of a Vincular and a Covincular Pattern of Length 3</a>, arXiv preprint arXiv:1512.03226 [math.CO], 2015-2017.
%H A098569 Beáta Bényi, Toufik Mansour, and José L. Ramírez, <a href="https://arxiv.org/abs/2309.06518">Pattern Avoidance in Weak Ascent Sequences</a>, arXiv:2309.06518 [math.CO], 2023.
%H A098569 Mireille Bousquet-Mélou, Anders Claesson, Mark Dukes and Sergey Kitaev, <a href="http://arxiv.org/abs/0806.0666">(2+2)-free posets, ascent sequences and pattern avoiding permutations</a>, arXiv:0806.0666 [math.CO], 2008-2009.
%H A098569 William Y. C. Chen, Alvin Y.L. Dai, Theodore Dokos, Tim Dwyer and Bruce E. Sagan, <a href="https://doi.org/10.37236/2472">On 021-Avoiding Ascent Sequences, The Electronic Journal of Combinatorics</a> Volume 20, Issue 1 (2013), #P76.
%H A098569 CombOS - Combinatorial Object Server, <a href="http://combos.org/jump">Generate pattern-avoiding permutations</a>
%H A098569 Mark Dukes and Peter R. W. McNamara, <a href="https://arxiv.org/abs/1807.11505">Refining the bijections among ascent sequences, (2+2)-free posets, integer matrices and pattern-avoiding permutations</a>, arXiv:1807.11505 [math.CO], 2018-2019; Journal of Combinatorial Theory (Series A), 167 (2019), 403-430.
%H A098569 Elizabeth Hartung, Hung Phuc Hoang, Torsten Mütze and Aaron Williams, <a href="https://arxiv.org/abs/1906.06069">Combinatorial generation via permutation languages. I. Fundamentals</a>, arXiv:1906.06069 [cs.DM], 2019.
%H A098569 Soheir M. Khamis, <a href="http://dx.doi.org/10.1016/S0012-365X(03)00106-7">Height counting of unlabeled interval and N-free posets</a>, Discrete Math. 275 (2004), no. 1-3, 165-175.
%H A098569 Nate Kube and Frank Ruskey, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Ruskey/ruskey99.html">Sequences That Satisfy a(n-a(n))=0</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.5.
%H A098569 Zhicong Lin and Sherry H. F. Yan, <a href="https://doi.org/10.1016/j.amc.2019.124672">Vincular patterns in inversion sequences</a>, Applied Mathematics and Computation (2020), Vol. 364, 124672.
%H A098569 Lara Pudwell, <a href="http://faculty.valpo.edu/lpudwell/papers/pudwell_thesis.pdf">Enumeration Schemes for Pattern-Avoiding Words and Permutations</a>, Ph. D. Dissertation, Math. Dept., Rutgers University, May 2008.
%H A098569 Lara Pudwell, <a href="https://doi.org/10.37236/301">Enumeration schemes for permutations avoiding barred patterns</a>, El. J. Combinat. 17 (1) (2010) R29.
%F A098569 a(n) = Sum_{k=0..n} C( (k+1)*(k+2)/2 + n-k-1, n-k).
%F A098569 G.f: Sum_{k>=0} x^k*y^C(k+1,2) where y = 1/(1-x). - _Christian Bean_, Mar 25 2015
%F A098569 log(a(n)) ~ n*(log(n) - 2*log(log(n)) + log(2) - 1 + 4*log(log(n))/log(n) - 2*log(2)/log(n) - 2/log(n)^2). - _Vaclav Kotesovec_, Oct 30 2023
%e A098569 In reference to comment about s(1)s(2)...s(n) above, a(3) = 14 = |{0000, 0001, 0002, 0003, 0010, 0020, 0100, 0012, 0013, 0023, 0101, 0103, 0120, 0123}|. - _Frank Ruskey_, Apr 17 2011
%e A098569 From _Paul D. Hanna_, Aug 24 2025: (Start)
%e A098569 The following array (A131338) illustrates a process that generates these numbers. Start with [1] in row n = 0. For n > 0, form row n by concatenating n 1's with the partial sums of the prior row. The row sums of row n equals a(n) for n >= 0; equivalently, the final term of row n+1 equals a(n). Continuing in this way generates all the terms of this sequence.
%e A098569   n = 0; [1];
%e A098569   n = 1: [1, 1];
%e A098569   n = 2; [1, 1, 1, 2];
%e A098569   n = 3: [1, 1, 1, 1, 2, 3, 5];
%e A098569   n = 4: [1, 1, 1, 1, 1, 2, 3, 4, 6, 9, 14];
%e A098569   n = 5: [1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 20, 29, 43];
%e A098569   n = 6: [1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 20, 27, 37, 51, 71, 100, 143];
%e A098569   n = 7: [1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21, 27, 35, 46, 61, 81, 108, 145, 196, 267, 367, 510];
%e A098569   ... (End)
%p A098569 A098569 := proc(n)
%p A098569     add( binomial((k+1)*(k+2)/2+n-k-1,n-k),k=0..n) ;
%p A098569 end proc:
%p A098569 seq(A098569(n),n=0..40) ; # _Georg Fischer_, Oct 29 2023
%t A098569 Table[Sum[Binomial[(k+1)*(k+2)/2+n-k-1, n-k],{k,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Apr 05 2015 *)
%o A098569 (PARI) a(n)=sum(k=0,n,binomial((k+1)*(k+2)/2+n-k-1,n-k))
%Y A098569 Cf. A098568, A131338.
%K A098569 nonn,changed
%O A098569 0,2
%A A098569 _Paul D. Hanna_, Sep 15 2004, Jun 29 2007
%E A098569 Offset changed to 0 by _Georg Fischer_, Oct 29 2023