A098573 Positive integers not appearing in sequence A098572, which calculates the values of floor(sum(m^(1/m),n=1..m)).
4, 8, 12, 17, 24, 32, 41, 52, 66, 82, 101, 124, 150, 181, 217, 259, 307, 362, 426, 500, 583, 679, 788, 911, 1051, 1209, 1387, 1588, 1814, 2067, 2351, 2668, 3022, 3418, 3858, 4347, 4891, 5494, 6162, 6902, 7719, 8622, 9618, 10715, 11923, 13252, 14711, 16314
Offset: 1
Examples
floor(1^(1/1)+2^(1/2)+3^(1/3))=3, floor(1^(1/1)+2^(1/2)+3^(1/3)+4^(1/4))=5 and so 4 is a member of this sequence.
Crossrefs
Cf. A098572.
Programs
-
Maple
ans:=[]: a:=0: last:=0: n:=1: do: a:=a+evalf(n^(1/n),50): if floor(a)-last>1 then ans:=[op(ans),floor(a)-1]: fi: last:=floor(a): n:=n+1: od: